1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexandra [31]
3 years ago
12

The triceps muscle in the back of the upper arm extends the forearm.

Physics
1 answer:
iren [92.7K]3 years ago
8 0

To solve this problem it is necessary to apply the concepts related to Torque as a function of Force and distance. Basically the torque is located in the forearm and would be determined by the effective perpendicular lever arm and force, that is

\tau = F \times r

Where,

F = Force

r = Distance

Replacing,

\tau = 2*10^3*0.03

\tau = 60N\cdot m

The moment of inertia of the boxer's forearm can be calculated from the relation between torque and moment of inertia and angular acceleration

\tau = I \alpha

I = Moment of inertia

\alpha = Angular acceleration

Replacing with our values we have that

I = \frac{\tau}{\alpha}

I = \frac{60}{120}

I = 0.5kg\cdot m^2

Therefore the value of moment of inertia is 0.5kg\cdot m^2

You might be interested in
Tennis balls traveling at greater than 100 mph routinely bounce off tennis rackets. At some sufficiently high speed, however, th
Kipish [7]

Answer:

Probability of tunneling is 10^{- 1.17\times 10^{32}}

Solution:

As per the question:

Velocity of the tennis ball, v = 120 mph = 54 m/s

Mass of the tennis ball, m = 100 g = 0.1 kg

Thickness of the tennis ball, t = 2.0 mm = 2.0\times 10^{- 3}\ m

Max velocity of the tennis ball, v_{m} = 200\ mph = 89 m/s

Now,

The maximum kinetic energy of the tennis ball is given by:

KE = \frac{1}{2}mv_{m}^{2} = \frac{1}{2}\times 0.1\times 89^{2} = 396.05\ J

Kinetic energy of the tennis ball, KE' = \frac{1}{2}mv^{2} = 0.5\times 0.1\times 54^{2} = 154.8\ m/s

Now, the distance the ball can penetrate to is given by:

\eta = \frac{\bar{h}}{\sqrt{2m(KE - KE')}}

\bar{h} = \frac{h}{2\pi} = \frac{6.626\times 10^{- 34}}{2\pi} = 1.0545\times 10^{- 34}\ Js

Thus

\eta = \frac{1.0545\times 10^{- 34}}{\sqrt{2\times 0.1(396.05 - 154.8)}}

\eta = \frac{1.0545\times 10^{- 34}}{\sqrt{2\times 0.1(396.05 - 154.8)}}

\eta = 1.52\times 10^{-35}\ m

Now,

We can calculate the tunneling probability as:

P(t) = e^{\frac{- 2t}{\eta}}

P(t) = e^{\frac{- 2\times 2.0\times 10^{- 3}}{1.52\times 10^{-35}}} = e^{-2.63\times 10^{32}}

P(t) = e^{-2.63\times 10^{32}}

Taking log on both the sides:

logP(t) = -2.63\times 10^{32} loge

P(t) = 10^{- 1.17\times 10^{32}}

6 0
3 years ago
What is the net force on this object?
damaskus [11]

Upward and downward forces cancel out. Net force is 8 newtons to the right

5 0
3 years ago
Read 2 more answers
An ideal spring is mounted horizontally, with its left end fixed. The force constant of the spring is 170 N/m. A glider of mass
gizmo_the_mogwai [7]

Answer:

Explanation:

First of all we shall find the velocity at equilibrium point of mass 1.2 kg .

It will be ω A , where ω is angular frequency and A is amplitude .

ω = √ ( k / m )

= √ (170 / 1.2 )

= 11.90 rad /s

amplitude A = .045 m

velocity at middle point ( maximum velocity ) = 11.9 x .045 m /s

= .5355 m /s

At middle point , no force acts so we can apply law of conservation of momentum

m₁ v₁ = ( m₁ + m₂ ) v

1.2 x .5355 = ( 1.2 + .48 ) x v

v = .3825 m /s

= 38.25 cm /s

Let new amplitude be A₁ .

1/2 m v² = 1/2 k A₁²

( 1.2 + .48 ) x v² = 170 x A₁²

( 1.2 + .48 ) x .3825² = 170 x A₁²

A₁ = .0379 m

New amplitude is .0379 m

7 0
3 years ago
During a free fall Swati was accelerating at -9.8m/s2. After 120 seconds how far did she travel? Use the formula =1/2 *
marta [7]
Distance fallen = 1/2 ( V initial + V final ) *t
We know
a = -9.8 m/s2
t=120s

To find distance fallen, we need to find V final
Use the equation
V final = V initial + a*t
Substitute known values
V final = 0 + (-9.8)(120)
V final = -1176 m/s

Then plug known values to distance fallen equation
Distance fallen = 1/2 ( 0 + 1176 )(120)
= 1/2(1776)(120)
=106,560 m

This way plugging into distance equation is actually the long way. A faster way is to plug the values into
Distance fallen = V initial * t + 1/2(a*t)
We won't need to find V final using another equation.

But anyways, good luck!



4 0
3 years ago
If a object is at rest, does it mean there are no forces acting on it
Ganezh [65]
Yes that is correct :)
4 0
2 years ago
Read 2 more answers
Other questions:
  • Three +3.0-μC point charges are at the three corners of a square of side 0.50 m. The last corner is occupied by a −3.0-μC charge
    14·2 answers
  • The diagram shows a heat engine. In which area of the diagram is unusable thermal energy detected?
    13·2 answers
  • If you were to descend 100 m below the surface of the ocean, you would be in _____.
    8·2 answers
  • The climate of a location is affected by the presence of
    6·2 answers
  • Fill in the blank. Charges added to a(n) _____ will immediately spread throughout the body.
    7·1 answer
  • what is the mechanical advantage of a machine that uses an input force of 20 newtons to achieve an output force of 60 newtons
    10·1 answer
  • What matter does not take up the space in the container?
    14·1 answer
  • Imagine a rock is dropped from the top of a tall building. After 2 seconds of falling, the rock’s instantaneous speed is approxi
    14·2 answers
  • How many protons, neutrons, and electrons does a neutral atom of this element have? (round atomic mass to nearest whole number)
    6·2 answers
  • How has modern safety equipment found in automobiles helped to counteract Newton’s First Law of Motion?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!