1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexandra [31]
3 years ago
12

The triceps muscle in the back of the upper arm extends the forearm.

Physics
1 answer:
iren [92.7K]3 years ago
8 0

To solve this problem it is necessary to apply the concepts related to Torque as a function of Force and distance. Basically the torque is located in the forearm and would be determined by the effective perpendicular lever arm and force, that is

\tau = F \times r

Where,

F = Force

r = Distance

Replacing,

\tau = 2*10^3*0.03

\tau = 60N\cdot m

The moment of inertia of the boxer's forearm can be calculated from the relation between torque and moment of inertia and angular acceleration

\tau = I \alpha

I = Moment of inertia

\alpha = Angular acceleration

Replacing with our values we have that

I = \frac{\tau}{\alpha}

I = \frac{60}{120}

I = 0.5kg\cdot m^2

Therefore the value of moment of inertia is 0.5kg\cdot m^2

You might be interested in
Your neighbor is riding her bike around the block. When she slows down and turns a corner, what changes about her?.
Ann [662]

Answer:

nothing

Explanation:If you ride a bike around the block and return to the exact point where you started, your displacement is zero.

By definition, displacement involves changing an object from its original position. No matter how far or for how long a body moves, if it returns to the position it started from, it has not been displaced at all. This means that the body has zero displacements.

4 0
2 years ago
Each driver has mass 79.0 kg. Including the masses of the drivers, the total masses of the vehicles are 800 kg for the car and 4
Mademuasel [1]

Answer:

Force exerted on the car driver by the seatbelt = 8139.4 N = 8.14 kN

Force exerted on the truck driver by the seatbelt = 1628.2 N = 1.63 kN

It is evident that the driver of the smaller vehicle has it worse. The car driver is in way more danger in this perfectly inelastic head-on collision with a bigger vehicle (the truck).

Explanation:

First of, we calculate the velocity of the vehicles after collision using the law of conservation of Momentum

Momentum before collision = Momentum after collision

Since the collision of the two vehicles was described as a head-on collision, for the sake of consistent convention, we will take the direction of the velocity of the bigger vehicle (the truck) as the positive direction and the direction of the car's velocity automatically is the negative direction.

Velocity of the truck before collision = 6.80 m/s

Velocity of the car before collision = -6.80 m/s

Let the velocity of the inelastic unit of vehicles after collision be v

Momentum before collision = (4000)(6.80) + (800)(-6.80) = 27200 - 5440 = 21,760 kgm/s

Momentum after collision = (4000 + 800)(v) = (4800v) kgm/s

Momentum before collision = Momentum after collision

21760 = 4800v

v = (21760/4800)

v = 4.533 m/s (in the direction of the big vehicle (the truck)

So, we then apply Newton's second law of motion which explains that the magnitude change in momentum is equal to the magnitude of impulse.

|Impulse| = |Change in momentum|

But Impulse = (Force exerted on each driver by the seatbelt) × (collision time) = (F×t)

Change in momentum = (Momentum after collision) - (Momentum before collision)

So, for the driver of the truck

Initial velocity = 6.80 m/s (the driver moves with the velocity of the truck)

Final velocity = 4.533 m/s

Change in momentum of the truck driver = (79)(6.80) - (79)(4.533) = 179.1 kgm/s

(F×t) = 179.1

F × 0.110 = 179.1

F = (179.1/0.11)

F = 1628.2 N = 1.63 kN

So, for the driver of the car

Initial velocity = -6.80 m/s (the driver moves with the velocity of the car)

Final velocity = 4.533 m/s

Change in momentum of the car driver = (79)(-6.80) - (79)(4.533) = -895.3 kgm/s

(F×t) = |-895.3|

F × 0.110 = 895.3

F = (895.3/0.11)

F = 8139.4 N = 8.14 kN

Hope this Helps!!!

3 0
3 years ago
How do you know the speed of an electromagnetic wave in a vacuum?
ycow [4]
Electromagnetic waves need no matter to travel - they can travel through empty space (a vacuum). In a vacuum, all electromagnetic waves travel at approximately 3 x 108 m/s - which is the fastest speed possible. ...
Light traveling value through an optical Fibre is, 2 x 108 m/s. Hope that helps.
5 0
3 years ago
Help pleasee i give brainliest
MA_775_DIABLO [31]

Answer:

A is a solid. C is a gas. In solid an liquid the particals are touching. In C, the particals have less affect on each other because they are so far apart.

5 0
3 years ago
I need help ASAP. This is for 15 points
kramer

Answer:

Latitude :

runs: east to west

measures : distances north and south of the equator

Longitude :

runs : north to south

measures : the distance east or west of the Prime Meridian

7 0
3 years ago
Other questions:
  • Which type of bond has an electronegativity difference greater than 1.7? a. ionic c. nonpolar covalent b. metallic d. polar cova
    13·1 answer
  • A particular grocery bag can withstand 40 N of tension force before it rips. If a shopper places 3 kg of food in the bag, what i
    9·2 answers
  • A sine wave with an rms value of 10.6 v is riding on a dc level of 24 v. what are the maxi- mum and minimum values of the result
    6·1 answer
  • Which factors are used to calculate the kinetic energy of an object? Check all that apply.
    8·1 answer
  • One light beam has wavelength, λ1, and frequency, f1. Another light beam has wavelength, λ2, and
    8·1 answer
  • Which is an example of scientific evidence that can be used to critique a new scientific argument?
    15·1 answer
  • Thanks + BRAINLIST <br><br> Please need correct answer asappp
    9·2 answers
  • Two forces are applied to a 2.0 kg block on a frictionless horizontal surface. F1 = 8.ON is applied to the left while F2 = 3.0 N
    13·1 answer
  • B) Write the name of the devices<br>which are shown in the given<br>figures and write their uses​
    6·1 answer
  • 019 10.0 points
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!