Given that,
Angle = 30°
Initial velocity = 15 m/s
We need to calculate the time of flight
Using formula of time of flight

Where, u = initial velocity
g = acceleration due to gravity
Put the value into the formula


We need to calculate the final velocity of the ball
Using equation of motion



Hence, The final velocity of the ball is 29.7 m/s.
Answer:
A. Repeat the experiment to be sure the results are valid.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
Below is the answers:
Fullback running
<span>Mo = mass * velocity </span>
<span>Mo = 95kg * 8.2 m/s =779 kg*m/s (a </span>
<span>He got stopped Change in Mo = 779 kg*m/s (b </span>
<span>Both stopped ===> Tackle's mo = - Halfback's Mo = - 779 kg*m/s (c & d </span>
<span>- 779 = 128 * v </span>
<span>v= - 6.09 m/s (e</span>
Answer:
The found acceleration in terms of h and t is:

Explanation:
(The complete question is given in the attached picture. We need to find the acceleration in terms of h and t in this question)
We are given 3 stages of movement of elevator. We'll first model them each of the stage one by one to find the height covered in each stage. After that we'll find the total height covered by adding heights covered in each stage, and equate it to Total height h. From that we can find the formula for acceleration.
<h3>
</h3><h3>
Stage 1</h3>
Constant acceleration, starts from rest.
Distance = 
Velocity = 
<h3>Stage 2</h3>
Constant velocity where
Velocity = 
Distance =
<h3>

</h3><h3 /><h3>Stage 3</h3>
Constant deceleration where
Velocity = 
Distance =

<h3>Total Height</h3>
Total height = y₁ + y₂ + y₃
Total height = 
<h3 /><h3>Acceleration</h3>
Find acceleration by rearranging the found equation of total height.
Total Height = h
h = 5a(t₁)²
