1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
skad [1K]
3 years ago
7

A photon of wavelength 2.78 pm scatters at an angle of 147° from an initially stationary, unbound electron. What is the de Brogl

ie wavelength of the electron after the photon has been scattered?
Physics
1 answer:
Elena-2011 [213]3 years ago
6 0

Answer:

2.07 pm

Explanation:

The problem given here is the very well known Compton effect which is expressed as

\lambda^{'}-\lambda=\frac{h}{m_e c}(1-cos\theta)

here, \lambda is the initial photon wavelength, \lambda^{'} is the scattered photon wavelength, h is he Planck's constant, m_e is the free electron mass, c is the velocity of light, \theta is the angle of scattering.

Given that, the scattering angle is, \theta=147^{\circ}

Putting the respective values, we get

\lambda^{'}-\lambda=\frac{6.626\times 10^{-34} }{9.11\times 10^{-31}\times 3\times 10^{8} } (1-cos147^\circ ) m\\\lambda^{'}-\lambda=2.42\times 10^{-12} (1-cos147^\circ ) m.\\\lambda^{'}-\lambda=2.42(1-cos147^\circ ) p.m.\\\lambda^{'}-\lambda=4.45 p.m.

Here, the photon's incident wavelength is \lamda=2.78pm

Therefore,

\lambda^{'}=2.78+4.45=7.23 pm

From the conservation of momentum,

\vec{P_\lambda}=\vec{P_{\lambda^{'}}}+\vec{P_e}

where,\vec{P_\lambda} is the initial photon momentum, \vec{P_{\lambda^{'}}} is the final photon momentum and \vec{P_e} is the scattered electron momentum.

Expanding the vector sum, we get

P^2_{e}=P^2_{\lambda}+P^2_{\lambda^{'}}-2P_\lambda P_{\lambda^{'}}cos\theta

Now expressing the momentum in terms of De-Broglie wavelength

P=h/\lambda,

and putting it in the above equation we get,

\lambda_{e}=\frac{\lambda \lambda^{'}}{\sqrt{\lambda^{2}+\lambda^{2}_{'}-2\lambda \lambda^{'} cos\theta}}

Therefore,

\lambda_{e}=\frac{2.78\times 7.23}{\sqrt{2.78^{2}+7.23^{2}-2\times 2.78\times 7.23\times cos147^\circ }} pm\\\lambda_{e}=\frac{20.0994}{9.68} = 2.07 pm

This is the de Broglie wavelength of the electron after scattering.

You might be interested in
*NEED ANSWER STAT*
tresset_1 [31]
Becomes a +1 ion for this
6 0
3 years ago
Read 2 more answers
Help me!!!!!!!!!!!!!!!!!!!!!!!
Gemiola [76]

Answer:a computer , machine forcery,0,push

Explanation:

8 0
2 years ago
A 100-meter sprint is a race using only the straight side of a racetrack. A 400-meter sprint is a race that makes one complete l
Shalnov [3]
Speed uses distance and velocity uses displacement in its calculation.

For 100 m race, distance = displacement. Hence speed = velocity

For 400m race, distance ≠ displacement. distance = 400m whereas displacement = 0m. Hence speed ≠ velocity
3 0
2 years ago
Read 2 more answers
I NEED HELP PLEASE, THANKS! :)
mrs_skeptik [129]

Answer:

1. Largest force: C;  smallest force: B; 2. ratio = 9:1

Explanation:

The formula for the force exerted between two charges is

F=K\dfrac{ q_{1}q_{2}}{r^{2}}

where K is the Coulomb constant.

q₁ and q₂ are also identical and constant, so Kq₁q₂ is also constant.

For simplicity, let's combine Kq₁q₂ into a single constant, k.

Then, we can write  

F=\dfrac{k}{r^{2}}

1. Net force on each particle

Let's

  • Call the distance between adjacent charges d.
  • Remember that like charges repel and unlike charges attract.

Define forces exerted to the right as positive and those to the left as negative.

(a) Force on A

\begin{array}{rcl}F_{A} & = & F_{B} + F_{C} + F_{D}\\& = & -\dfrac{k}{d^{2}}  - \dfrac{k}{(2d)^{2}}  +\dfrac{k}{(3d)^{2}}\\& = & \dfrac{k}{d^{2}}\left(-1 - \dfrac{1}{4} + \dfrac{1}{9} \right)\\\\& = & \dfrac{k}{d^{2}}\left(\dfrac{-36 - 9 + 4}{36} \right)\\\\& = & \mathbf{-\dfrac{41}{36} \dfrac{k}{d^{2}}}\\\\\end{array}

(b) Force on B

\begin{array}{rcl}F_{B} & = & F_{A} + F_{C} + F_{D}\\& = & \dfrac{k}{d^{2}}  - \dfrac{k}{d^{2}}  + \dfrac{k}{(2d)^{2}}\\& = & \dfrac{k}{d^{2}}\left(\dfrac{1}{4} \right)\\\\& = &\mathbf{\dfrac{1}{4} \dfrac{k}{d^{2}}}\\\\\end{array}

(C) Force on C

\begin{array}{rcl}F_{C} & = & F_{A} + F_{B} + F_{D}\\& = & \dfrac{k}{(2d)^{2}} + \dfrac{k}{d^{2}}  + \dfrac{k}{d^{2}}\\& = & \dfrac{k}{d^{2}}\left( \dfrac{1}{4} +1 + 1 \right)\\\\& = & \dfrac{k}{d^{2}}\left(\dfrac{1 + 4 + 4}{4} \right)\\\\& = & \mathbf{\dfrac{9}{4} \dfrac{k}{d^{2}}}\\\\\end{array}

(d) Force on D

\begin{array}{rcl}F_{D} & = & F_{A} + F_{B} + F_{C}\\& = & -\dfrac{k}{(3d)^{2}}  - \dfrac{k}{(2d)^{2}}  - \dfrac{k}{d^{2}}\\& = & \dfrac{k}{d^{2}}\left( -\dfrac{1}{9} - \dfrac{1}{4} -1 \right)\\\\& = & \dfrac{k}{d^{2}}\left(\dfrac{-4 - 9 -36}{36} \right)\\\\& = & \mathbf{-\dfrac{49}{36} \dfrac{k}{d^{2}}}\\\\\end{array}

(e) Relative net forces

In comparing net forces, we are interested in their magnitude, not their direction (sign), so we use their absolute values.

F_{A} : F_{B} : F_{C} : F_{D}  =  \dfrac{41}{36} : \dfrac{1}{4} : \dfrac{9}{4} : \dfrac{49}{36}\ = 41 : 9 : 81 : 49\\\\\text{C experiences the largest net force.}\\\text{B experiences the smallest net force.}\\

2. Ratio of largest force to smallest

\dfrac{ F_{C}}{ F_{B}} = \dfrac{81}{9} = \mathbf{9:1}\\\\\text{The ratio of the largest force to the smallest is $\large \boxed{\mathbf{9:1}}$}

7 0
3 years ago
A ball A of mass 0.5 kg moving with a Velacity of 10 m/s a head on Collision with a ball B of mass 2kg moving with a Velocity of
Nesterboy [21]

Answer:

The common velocity v after collision is 2.8m/s²

Explanation:

look at the attachment above ☝️

3 0
2 years ago
Other questions:
  • A tuba may be treated like a tube closed at one end. If a tuba has a fundamental frequency of 88.4 Hz, determine the first three
    14·1 answer
  • A tiny boat is floating in a metal bucket. If you build a fire under the bucket ,how will most of the heat be transferred from t
    12·1 answer
  • A solid insulating sphere of radius R = 1.0 m that carries a positive charge Q1 = 1.0 mC uniformly distributed over it is concen
    7·1 answer
  • HNO3 (aq) + H20 (1) ► NO3- (aq) + H30+ (aq)
    6·1 answer
  • 6. A physics book slides off a horizontal table top with a speed of 1.25m/s. It strikes a floor in 0.4s.
    14·1 answer
  • A 2.10 kg textbook rests on a frictionless, horizontal surface. A cord attached to the book passes over a pulley whose diameter
    6·1 answer
  • Calculate how long
    7·1 answer
  • A capacitor is constructed of two large, identical, parallel metal plates separated by a small distance d
    9·1 answer
  • Calcular la longitud del faldón de una Rampa de Acceso , que en planta tiene una longitud de 20 m y la pendiente es 27%.
    10·1 answer
  • What landforms are found on the Moon? (Select all that apply.)
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!