Answer:
18.7842493212 W
Explanation:
T = Tension = 1871 N
= Linear density = 3.9 g/m
y = Amplitude = 3.1 mm
= Angular frequency = 1203 rad/s
Average rate of energy transfer is given by

The average rate at which energy is transported by the wave to the opposite end of the cord is 18.7842493212 W
Answer:

Explanation:
In that the gas thermometer is a constant volume, it is satisfied that:
How the boiling water is under regular atmospheric pressure, then

Thus


Answer:
140265.8 C = 1.403 × 10⁵ C
Explanation:
The battery's electric potential energy is used to account for the kinetic and potential work done in moving the car up this hill.
Potential work required to move the 757 kg car up a vertical height of 195 m = mgh
P.E = 757 × 9.8 × 195 = 1446627 J
Kinetic work done = (1/2)(m)(v²)
K.E = (1/2)(757)(25²) = 236562.5 J
Total work done in moving the car up that height = 1446627 + 236562.5 = 1683189.5 J
And this would be equal to the potential of the battery.
For the battery, potential difference = (electric potential energy)/(charges moved)
ΔV = ΔU/q
q = ΔU/ΔV
ΔU = 1683189.5 J
ΔV = 12.0 V
q = 1683189.5/12 = 140265.8 C
I’ll say c Bc it make more since to find the travel distance
That would be answer B
hope this helped you