Answer:
640 m.
Explanation:
The following data were obtained from the question:
Acceleration (a) = –20 m/s/s
Time (t) = 8 s
Final velocity (v) = 0 m/s
Distance (s) =.?
Next, we shall determine the initial velocity (u) of the car. This can be obtained as follow:
Acceleration (a) = –20 m/s/s
Time (t) = 8 s
Final velocity (v) = 0 m/s
Initial velocity (u)
a = (v – u) / t
–20 = (0 – u) / 8
–20 = – u / 8
Cross multiply
–20 × 8 = – u
– 160 = – u
Divide both side by – 1
u = – 160 / – 1
u = 160 m/s
Finally, we shall determine the distance travelled by the car before stopping as follow:
Time (t) = 8 s
Final velocity (v) = 0 m/s
Initial velocity (u) = 160 m/s
Distance (s) =.?
s = (v + u)t /2
s = (0 + 160) × 8 /2
s = (160 × 8) /2
s = 1280 / 2
s = 640 m
Therefore, the car travelled 640 m before stopping.
Answer:
Unemployment cause stress which ultimately has long-term physiological health effect
The magnitude of the magnetic force per unit length on the top wire is
2×10⁻⁵ N/m
<h3>How can we calculate the magnitude of the magnetic force per unit length on the top wire ?</h3>
To calculate the magnitude of the magnetic force per unit length on the top wire, we are using the formula
F= 
Here we are given,
= magnetic permeability
= 4
×10⁻⁷ H m⁻¹
If= 12 A
d= distance from each wire to point.
=0.12m
Now we put the known values in the above equation, we get
F= 
Or, F = 
Or, F= 2×10⁻⁵ N/m.
From the above calculation, we can conclude that the magnitude of the magnetic force per unit length on the top wire is 2×10⁻⁵ N/m.
Learn more about magnetic force:
brainly.com/question/2279150
#SPJ4
Answer:
lift per meter of span = 702 N/m
Explanation:
See attached pictures.