Answer:
Explanation:
1. Please provide the enthalpy info - I will work on it with the info
2.
i) Reaction a should be modified to match the number of S in equation:
2S + 2O2 -> 2SO2 deltaH = -370kJ
ii) Reaction b should be written reversely to match the reactants of SO2:
2SO2 + O2 -> 2SO3 deltaH = 256kJ
iii) Adding the equations together:
2S + 3O2 -> 2SO3
iv) Enthalpy of the combined reaction = -370+256 = -114kJ
It is negative so the reaction is exothermic.
Answer:
B. Bohr’s model electrons cannot exist between orbits, but in the electron cloud model, the location of the electrons cannot be predicted.
AND
C. The modern model explains all available data about atoms; Bohr’s model does not.
Explanation:
The answers are right on Edge. :)
Answer:
a chemical bond in which three pairs of electrons are shared between two atoms
Explanation:
Answer:
146
Explanation:
uranium is 92 and the mass number of the isotope is given as a 238 therefore it is not the two protons 92 electrons and
real explanation Google it
Answer:
ΔH = - 272 kJ
Explanation:
We are going to use the fact that Hess law allows us to calculate the enthalpy change of a reaction no matter if the reaction takes place in one step or in several steps. To do this problem we wll add two times the first step to second step as follows:
N2(g) + 3H2(g) → 2NH3(g) ΔH=−92.kJ Multiplying by 2:
2N2(g) + 6H2(g) → 4NH3(g) ΔH=− 184 kK
plus
4NH3(g) + 5O2(g) → 4NO(g) +6H2O(g) ΔH=−905.kJ
__________________________________________________
2N2(g) + 6H2(g) + 5O2(g)→ 4NO(g) + 6H2O(g) ΔH = (-184 +(-905 )) kJ
ΔH = -1089 kJ
Notice how the intermediate NH3 cancels out.
As we can see this equation is for the formation of 4 mol NO, and we are asked to calculate the ΔH for the formation of one mol NO:
-1089 kJ/4 mol NO x 1 mol NO = -272 kJ (rounded to nearest kJ)