Answer:
P-block metals have classic metal characteristics like they are shiny, they are good conductors of heat and electricity, and they lose electrons easily. These metals have high melting points and readily react with nonmetals to form ionic compounds.
Explanation:
Answer: The final temperature of both the weight and the water at thermal equilibrium is
.
Explanation:
The given data is as follows.
mass = 7.62 g, 
Let us assume that T be the final temperature. Therefore, heat lost by water is calculated as follows.
q =
= 
Now, heat gained by lead will be calculated as follows.
q =
=
According to the given situation,
Heat lost = Heat gained
= 
T = 
Thus, we can conclude that the final temperature of both the weight and the water at thermal equilibrium is
.
Answer:
This is not a balanced equation
Explanation:
Let's make it a balanced equation.
2 NH3 + H2So4 = (NH4)2So4
Glad I could help!!
Electric current produces a magnetic field. This magnetic field can be visualized as a pattern of circular field lines surrounding a wire. One way to explore the direction of a magnetic field is with a compass, as shown by a long straight current-carrying wire in.