Answer:

Explanation:
The temperature and amount of gas are constant, so we can use Boyle’s Law.

Data:

Calculations:

Explanation:
this equation is balanced
if you look at it carefully
k=1
f=1
o=2
we do not have any opposing element
Answer:
The correct answer is: d. The pKa of the chosen buffer should be close to the optimal pH for the biochemical reaction.
Explanation:
The buffer resist or maintain the change in pH in case of Acid or basic addition to the solution. The buffer capacity should be within one or two pH units when compared to the optimal pH.
Thus it is important to select a buffer with pKa close to the optimum pH of the reaction because the ability for the buffer to maintain the pH is is great at the pH close to pKa.
values of the quantum numbers: -6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6
location of the electron: In the 7th energy level away from the nucleus.
Explanation:
From the description of the problem, the magnetic number is given is as -6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6 and the electron is located in the 7th energy level away from the nucleus. Basically, the problem is testing for the understanding of the principal quantum numbers which gives the location of electrons and the magnetic quantum number that shows the spatial orientation of the orbitals.
The orbital designation of the describe electron is 7d
- Magnetic quantum number is limited by the azimuthal quantum number which is the quantum number describing the possible shapes. The azimuthal is given as L= n-1. "n" is the principal quantum number which is 7. Therefore L is 6 and the magnetic quantum numbers are -6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6
- The position of the electron is given by the principal quantum number which represents the main energy level in which the orbital is located or the average distance from the nucleus. Here it is 7.
Learn more:
brainly.com/question/9288609
#learnwithBrainly
Answer:
if you want to have answers, don't take it wrong ...but put more details !
Explanation: