Answer:
Ka = 4.76108
Explanation:
- CO(g) + 2H2(g) ↔ CH3OH(g)
∴ Keq = [CH3OH(g)] / [H2(g)]²[CO(g)]
[ ]initial change [ ]eq
CO(g) 0.27 M 0.27 - x 0.27 - x
H2(g) 0.49 M 0.49 - x 0.49 - x
CH3OH(g) 0 0 + x x = 0.11 M
replacing in Ka:
⇒ Ka = ( x ) / (0.49 - x)²(0.27 - x)
⇒ Ka = (0.11) / (0.49 - 0.11)² (0.27 - 0.11)
⇒ Ka = (0.11) / (0.38)²(0.16)
⇒ Ka = 4.76108
Answer:
H2C=CH2 + H2O + CO → CH3CH2CO2H. It is also produced by the aerobic oxidation of propionaldehyde.
Atoms are (stable) if it has (valence) electrons in its outer most energy level.
The given equation from the problem above is already balance,
N2O5 ---> 2NO2 + 0.5O2
Since, in every mole of N2O5 consumed, 2 moles of NO2 are formed, we can answer the problem by multiplying the given rate, 7.81 mol/L.s with the ratio.
(7.81 mol/L.s) x (2 moles NO2 formed/ 1 mole of N2O5 consumed)
= 15.62 mol/L.s
The answer is the rate of formation of NO2 is approximately 15.62 mol/L.s.