Answer:
Option B. At pH extremes, the amino acid molecules mostly carry a net charge, thus increasing their solubility in polar solvent.
C. At very low or very high pH, the amino acid molecules have increased charge, thus form more salt bonds with water solvent molecules.
Explanation:
Answer:
-5.51 kJ/mol
Explanation:
Step 1: Calculate the heat required to heat the water.
We use the following expression.

where,
- c: specific heat capacity
- m: mass
- ΔT: change in the temperature
The average density of water is 1 g/mL, so 75.0 mL ≅ 75.0 g.

Step 2: Calculate the heat released by the methane
According to the law of conservation of energy, the sum of the heat released by the combustion of methane (Qc) and the heat absorbed by the water (Qw) is zero
Qc + Qw = 0
Qc = -Qw = -22.0 kJ
Step 3: Calculate the molar heat of combustion of methane.
The molar mass of methane is 16.04 g/mol. We use this data to find the molar heat of combustion of methane, considering that 22.0 kJ are released by the combustion of 64.00 g of methane.

Answer:
9.6 %
Explanation:
<u>Step 1: How to define percent error ? </u>
⇒ % error is the difference between a measured value and the known or accepted value
⇒Percent error is calculated using the following formula:
⇒%error = | Experimental value-theoretical value/theoretical value | x100%
⇔ this can be written as well as : error = (| Experimental value/ theoretical value | - | Theoretical value / Theoretical value | ) x100%
<u>Step 2: Calculate % error</u>
In this case, this means :
%error = ( |(4.45 cm - 4.06cm ) / 4.06cm | ) x100%
%error = 0.096 x100%
%error =9.6 %