Answer:
M KIO3 = 1.254 mol/L
Explanation:
∴ w KIO3 = 553 g
∴ mm KIO3 = 214.001 g/mol
∴ volumen sln = 2.10 L
⇒ mol KIO3 = (553 g)×(mol/210.001 g) = 2.633 mol
⇒ M KIO3 = (2.633 mol KIO3 / (2.10 L sln)
⇒ M KIO3 = 1.254 mol/L
Answer:
C
Explanation:
Temperature is directly related to kinetic energy (KE). As we raise temperature, we are raising KE, as well. Particles with more KE move more quickly and with more force.
This means that these particles are more likely to collide with each other and react to allow the chemical reaction to follow through. In turn, if the chemical reaction is more likely to go to completion, the reaction rate increases, eliminating A and B.
The concentration of the solute is not affected by the temperature; in other words, temperature will not increase or decrease the amount of solute in the solution, so eliminate D.
Thus the answer is C.
Hope this helps!
Answer:
The third option
Explanation:
If people have found more volcanic rock layers in the past that would mean that volcanic activity was more common in the past.