Answer;
A decrease in the vapor pressure of the liquid.
Dissolving a solute such as potassium hydroxide in a solvent such as water results in a decrease in the vapor pressure of the liquid.
Explanation;
The vapor pressure of a liquid is the equilibrium of a vapor above its liquid.
In other words it is the pressure of the vapor resulting from the evaporation of a liquid above a given sample of the liquid in a closed container.
The vapor pressure of a liquid in a closed container depends on the temperature.
The coorect answer would be A
Answer:
The correct option is;
D. (2)(56 g)
Explanation:
MgCl₂ + 2KOH → Mg(OH)₂ + 2KCl
From the balanced chemical reaction equation, we have;
One mole of MgCl₂ reacts with two moles of KOH to produce one mole of Mg(OH)₂ and 2 moles of KCl
Therefore, the number of moles of KOH that react with one mole of KCl = 2 moles
The mass, m, of the two moles of KOH = Number of moles of KOH × Molar mass of KOH
The molar mass of KOH = 56.1056 g/mol
∴ The mass, m, of the two moles of KOH = 2 moles × 56.1056 g/mol = 112.2112 grams
The amount in grams of KOH that react with one mole of MgCl₂ = 112.2112 grams ≈ 112 grams = (2)(56 g).
When you work with molar mass, you solve for the quantity of ''Moles'' within the substance by converting Mass. The way you can tell the equation is balanced would be by knowing whether the moles were equivalent on both sides or not. Therefore, if they are equal, it is balanced considering you have the same amount of moles on each side of the equation.