In order to emit electrons, the cesium will have to absorb photons. Each photon will knock out one electron by transferring its energy to the electron. Therefore, by the principle of energy conservation, the energy of the removed electron will be equal to the energy of the incident photon. That energy is calculated using Planck's equation:
E = hf
E = 6.63 x 10⁻³⁴ * 1 x 10¹⁵
E = 6.63 x 10⁻¹⁹ Joules
The electron will have 6.63 x 10⁻¹⁹ Joules of kinetic energy
1.Start with the number of grams of each element, given in the problem.
2.Convert the mass of each element to moles using the molar mass from the periodic table.
3.Divide each mole value by the smallest number of moles calculated.
4.Round to the nearest whole number. This is the mole ratio of the elements and is.
Answer:
ΔT = 0.78 °C
Explanation:
Given data:
Mass of Al = 9.5 g
Specific heat capacity of Al = 0.9 J/g.°C
Temperature change = ?
Heat added = 67 J
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
67 J = 9.5 g × 0.9 j/g.°C × ΔT
67 J = 85.5 j/°C × ΔT
ΔT = 67 J / 85.5 j/°C
ΔT = 0.78 °C
Answer:
Inactive metals are inert metals that doesn’t react with most of the chemicals.They are highly resistant to oxidation and corrosion when exposed to moisture.
Explanation: