Answer:
a) The module's acceleration in a vertical takeoff from the Moon will be 
b) Then we can say that a thrust of
won't be able to lift off the module from the Earth because it's smaller than the module's weight (
).
Explanation:
a) During a vertical takeoff, the sum of the forces in the vertical axis will be equal to mass times the module's acceleration. In this this case, the thrust of the module's engines and the total module's weight are the only vertical forces. (In the Moon, the module's weight will be equal to its mass times the Moon's gravity acceleration)

Where:
thrust 
module's mass 
moon's gravity acceleration 
module's acceleration during takeoff
Then, we can find the acceleration like this:


The module's acceleration in a vertical takeoff from the Moon will be 
b) To takeoff, the module's engines must generate a thrust bigger than the module's weight, which will be its mass times the Earth's gravity acceleration.

Then we can say that a thrust of
won't be able to lift off the module from the Earth because it's smaller than the module's weight (
).
Hi there!
We can begin by finding the acceleration of the block.
Use the kinematic equation:

The block starts from rest, so:

Now, we can do a summation of forces of the block using Newton's Second Law:

mb = mass of the block
T = tension of string
Solve for tension:

Now, we can do a summation of torques for the wheel:

Rewrite:

We solved that the linear acceleration is 1.5 m/s², so we can solve for the angular acceleration using the following:

Now, plug in the values into the equation:

Place it in the back of your phone where the old battery was
Answer:
A. 2HCl + Mg(OH)2 + 2H2O + MgCl2
hope it helps
Answer:
<h3>
The area of second coil is ≅ 0.025 
</h3>
Explanation:
Given :
No. of turns in the first coil 
No. of turns in the second coil 
Area of first coil 
According to the law of electromagnetic induction,
Induced emf =
Where
magnetic flux.
Since given in question emf of both coil is same so we compare above equation.




Therefore, the area of second coil is ≅ 0.025 