I would say letter A to this because we need rain water for crops plants. Also we need it so that we can drink it. Its less great over sea because as it merge with the salt in the ocean it becomes less drinkable and less usable.
You would be correct.
Because you have only JUST released the arrow, and how close he is to the target, it would have the same amount of energy when it strikes the target. Yes, the kinetic energy would be destroyed when you hit the target but not right away. And yes, the potential energy would also be destroyed once you release the arrow, but it goes straight back once it stops moving, aka when it hits the target, although it has only just stopped moving.
Hope this helps!
<span>The element bromine has two isotopes: Br-79 and Br-81, with a 50%-50% isotopic abundance. Statistically, 25% of bromine molecules will be Br79-Br79, 25% will be Br81-Br81 and 50% will be Br79-Br81. This is equivalent to a ratio of 1:1:2 or 1:2:1. The peaks in a mass spectrum just like chromatography reflect this relative abundance of different isotopic combinations.</span>