Answer:
20 m/s
Explanation:
Recall that one of the equations of motions can be written:
v = u + at, (also see attached for reference)
Where,
v = final speed (we are asked to find this)
u = initial speed = 0 (because it starts from rest)
t = time taken = 5s
We simply substitute the given values into the equation:
v = u + at
v = 0 + (4)(5)
v = 20 m/s
]A force called the effort force is applied at one point on the lever in order to move an object, known as the resistance force, located at some other point on the lever.
The way levers work is by multiplying the effort exerted by the user. Specifically, to lift and balance an object, the effort force the user applies multiplied by its distance to the fulcrum must equal the load force multiplied by its distance to the fulcrum. Consequently, the greater the distance between the effort force and the fulcrum, the heavier a load can be lifted with the same effort force.
X=.5(a)t^2 can be used: 2.5m=.5(g)(1), g=5m/s^2.
<span>Passive Transport Passive transport is the movement of molecules across the cell membrane and does not require energy. It is dependent on the permeability of the cell membrane. There are three main kinds of passive transport - Diffusion, Osmosis and Facilitated Diffusion</span>