Answer:
A- Martin brings his friends home to meet grandpa.
Explanation:
took the test.
Answer:
velocity at the top: 0 m/s
acceleration at the top: -9.8 m/s²
Explanation:
Assuming up is positive and down is negative;
The velocity of the ball at the top of its path will be 0 m/s and the acceleration will be negative.
The velocity is 0 m/s because the ball does not move at the top of its path, and it switches from a positive velocity to a negative velocity. It must go through 0 in order to go from positive to negative.
The acceleration, however, is always negative no matter where the ball is in its motion. This negative acceleration causes the ball to slow down as it reaches the top, and speed up as it reaches the bottom.
<u>Think about it:</u> If there wasn't a negative acceleration, and it was instead 0, the ball would never come back down and instead keep going in a straight line.
The final speed of an airplane is v = 92.95 m/s
The rate of change of position of an object in any direction is known as speed i.e. in other word, Speed is measured as the ratio of distance to the time in which the distance was covered.
Solution-
Here given,
Acceleration a= 10.8 m/s2 .
Displacement (s)= 400m
Then to find final speed of airplane v=?
Therefore from equation of motion can be written as,
v²=u²+ 2as
where, u is initial speed, v is final speed ,a is acceleration and s is displacement of the airplane. Therefore by putting the value of a & s in above equation and (u =0) i.e. the initial speed of airplane is zero.
v²= 2×10.8 m/s²×400m
v²=8640m/s
v=92.95m/s
hence the final speed of airplane v =92.95m/s
To know more about speed
brainly.com/question/13489483
#SPJ4
Answer:
A. Mass
Explanation:
Inertia of an object is the resistance of the object to any change in its state of motion: it means that if an object is at rest, it tends to stay at rest for inertia (unless a net force acts on it), and if it is moving, it tends to continue moving with the same velocity, for inertia.
The inertia also describes how difficult it is to stop/accelerate an object, and it is directly proportional to the mass of the object: in fact, the larger the mass of an object, the more difficult it is to change its state of motion, and this means it has greater inertia.
Answer:

Explanation:
In order to calculate the angular momentum of the particle you use the following formula:
(1)
r is the position vector respect to the point (0 , 5.0), that is:
r = 0m i + 5.0m j (2)
p is the linear momentum vector and it is given by:
(3)
the direction of p comes from the fat that the particle is moving along the i + j direction.
Then, you use the results of (2) and (3) in the equation (1) and solve for L:

The angular momentum is -30 kgm^2/s ^k