Answer:
jwhgrewhuejqiwmkosjcdihwbfuqjiwdkmojcshidvwuf hiiii againnnn :)) good luck
Answer:
1.68 s
Explanation:
From newton's equation of motion,
a = (v-u)/t.................................. Equation 1
Making t the subject of the equation
t =(v-u)g............................. Equation 2
Where t = time taken for the bowling pin to reach the maximum height, v = final velocity bowling pin, u = initial velocity of the bowling pin, g = acceleration due to gravity.
Note: Taking upward to be negative and down ward to be positive,
Given: v = 0 m/s ( at the maximum height), u = 8.20 m/s, g = -9.8 m/s²
t = (0-8.20)/-9.8
t = -8.20/-9.8
t = 0.84 s.
But,
T = 2t
Where T = time taken for the bowling pin to return to the juggler's hand.
T = 2(0.84)
T = 1.68 s.
T = 1.68 s
Answer:
437500Joules
Explanation:
Kinetic energy=1/2mvsquare
1/2 x 1400 x 25 x25
kinetic energy= 437500Joules
Answer:
b)
Explanation:
Normal force, is always directed upward the surface over which is placed the object, and can adopt any value, as required to meet Newton's 2nd Law.
In this case, as the external force on the suitcase pulls upward, in order to counteract the influence of gravity, normal force is less than the weight of the suitcase, as follows:
F + Fn = m*g
⇒ Fn = m*g - F
So, the normal force is equal to the magnitude of the weight of the suitcase (m*g) minus the magnitude of the force of the pull (F) which is the same expressed by the statement b.
Answer:
the clown can be put on a sealion and the other clown can hold a lot of peole he help a clown that was tall and heivy
Explanation: