Answer:

Explanation:
<u>Coulomb's Law</u>
The force between two charged particles of charges q1 and q2 separated by a distance d is given by the Coulomb's Law formula:

Where:

q1, q2 = the objects' charge
d= The distance between the objects
We know both charges are identical, i.e. q1=q2=q. This reduces the formula to:

Since we know the force F=1 N and the distance d=1 m, let's find the common charge of the spheres solving for q:

Substituting values:


This charge corresponds to a number of electrons given by the elementary charge of the electron:

Thus, the charge of any of the spheres is:


Answer:
ion channel
Explanation:
discussion of ion channel structure and function, followed by the classical description of the action potential and the ... Resistance and Conductance depend on the size and shape of the object that you are passing ... Intracellular and extracellular ion concentrations must ... applied to essentially any cell type.
To answer this question, we will use the law of conservation of momentum which states that:
(m1+m2)Vi = m1V1 + m2V2 where:
m1 is the mass of the woman = 50 kg
m2 is the mass of the cart = 10 kg
Vi is the initial velocity (of woman and cart combined) = 5 m/sec
V1 is the final velocity of the woman = 7 m/sec
V2 is the final velocity of the cart that we need to calculate
Substitute with the givens in the above equation to get the final velocity of the cart as follows:
(50+10)(5) = (50)(7) + (10)V2
10V2 = -50
V2 = -5 m/sec
Note that the negative sign indicates that the cart is moving in an opposite direction to the others.