1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ss7ja [257]
3 years ago
10

WHICH TYPE OF NUCLEAR WASTE CAN BE MOST SAFELY HANDLED

Physics
1 answer:
zlopas [31]3 years ago
6 0
<span>Low-level weapons production and Radioactive waste. hope that helped</span>
You might be interested in
A small sphere with mass m is attached to a massless rod of length L that is pivoted at the top, forming a simple pendulum. The
USPshnik [31]

Answer:

a) see attached, a = g sin θ

b)

c)   v = √(2gL (1-cos θ))

Explanation:

In the attached we can see the forces on the sphere, which are the attention of the bar that is perpendicular to the movement and the weight of the sphere that is vertical at all times. To solve this problem, a reference system is created with one axis parallel to the bar and the other perpendicular to the rod, the weight of decomposing in this reference system and the linear acceleration is given by

          Wₓ = m a

          W sin θ = m a

          a = g sin θ

b) The diagram is the same, the only thing that changes is the angle that is less

                θ' = 9/2  θ

             

c) At this point the weight and the force of the bar are in the same line of action, so that at linear acceleration it is zero, even when the pendulum has velocity v, so it follows its path.

The easiest way to find linear speed is to use conservation of energy

Highest point

            Em₀ = mg h = mg L (1-cos tea)

Lowest point

          Emf = K = ½ m v²

          Em₀ = Emf

          g L (1-cos θ) = v² / 2

              v = √(2gL (1-cos θ))

4 0
3 years ago
A student places two books on a table. One book weighs less than the other book
Gnoma [55]
The book that weighs less
6 0
2 years ago
An astronaut lands on a new, recently discovered planet in a different star system. The astronaut measures the acceleration due
Nezavi [6.7K]

Answer:

The radius of the new planet is ~2.04 * 10⁶ m, or 2,041,752 m.

Explanation:

We can use Newton's Law of Universal Gravitation:

  • \displaystyle F_g=G\frac{Mm}{r^2}

Let's look at Newton's 2nd Law:

  • F=ma

We can set these equations equal to each other:

  • \displaystyle G\frac{Mm}{r^2} =ma

The mass of the second mass (astronaut) cancels out. We are left with:

  • \displaystyle G\frac{M}{r^2} =a

We are solving for the radius of the new planet, so we can rearrange the equation:

  • \displaystyle r=\sqrt{\frac{GM}{a} }

Substitute in our known values given in the problem (<u><em>G = 6.67 * 10⁻¹¹ </em></u><em> ; </em><u><em>M = 7.5 * 10²³</em></u><em> ; </em><u><em>a = 12</em></u>).

  • \displaystyle r =\sqrt{\frac{(6.67\times 10^{-11})(7.5 \times 10^{23}}{12} }
  • r=2.04 \times 10^6

The radius of the new planet is ~2.04 * 10⁶ m.

3 0
2 years ago
Which best describes a gamma ray?
Alik [6]

Hello, Kaypau3969

A gamma ray is a strong energy ray that has nothing no charge neither mass.

If my answer helped please leave a thanks rate it 5 stars and the most important mark me as brainliest thank you and have the best day ever!

4 0
3 years ago
Read 2 more answers
If an electron is released at PP , what is the magnitude of the net force that these rods exert on it?
pishuonlain [190]

The magnitude of the net force that the rods exert after an electron is released at point P is 2.885 × 10⁻¹⁵ N.

Given values:

Length of non-conducting rod, l = 1.20 m

Charge on positive rod, +Q = +2.50 μC = +2.50 × 10⁻⁶ C

Charge on negative rod, -Q = -2.50 μC = -2.50 × 10⁻⁶ C

Distance from point P of each rod, x = 60 cm = 0.60 m

Calculation of Net electric force exerted on point P:

Consider an electron released at point P, then the net electric force exerted will be given as:

F = e. E_net       - ( 1 )

Step 1:

The net electric field value is given as:

E_net  = E₁ cos Φ + E₂ cos Φ      

           = 2E₁ cos Φ                  -( 2 )

where, E₁ & E₂ are electric fields due to positive and negative rod                

            respectively.

            Φ is phase angle

Step 2:

The electric field due to positive rod is given as:

E₁ = k (λ/r)             - ( 3 )

where, k is Coulomb's force constant

            λ is linear charge density

            r is distance between point P and half of the rod.

Now, the linear charge density is given as:

λ = Charge/length = Q/x

The value of r is given as:

r = √x²-a²

where, x is length of rod

           a is half length of rod

Applying values in above equation, we get:

r = √x²-(x/2)²

r = √(1.20 m)²-(1.20/2)²

  = √1.08

  = 1.04 m

Substituting all the determined values in equation 3 we get:

E₁ = k (λ/r)

   = k [(Q/x)/r]

   = k [ Q/xr ]

   = (9×10⁹ Nm²/C²) [ |+2.50×10⁻⁶ C|/(1.20 m)(1.04 m)]

   = 1.803×10⁴ N/C

Step 3:

Similarly, the electric field due to negative rod is given as:    

E₂ = k [ Q/xr ]

    = (9×10⁹ Nm²/C²) [ |-2.50×10⁻⁶ C|/(1.20 m)(1.04 m)]

    = 1.803×10⁴ N/C

Step 4:

Consider equation 2:

E_net  = 2E₁ cos Φ

From the figure we get the phase angle as:

Φ = tan⁻¹ (0.60 m/0.60 m)

   = tan⁻¹ ( 1 )

   = π/4  

Now, the electric field produced due to each rod is equal and mutually perpendicular. Thus, the net electric field after applying values can be calculated as:

E_net = 2(1.803×10⁴ N/C) cos π/4

          = 2(1.803×10⁴ N/C) (0.5)

          = 18030 N/C

Step 5:

Consider equation 1 :

F = e. E_net

where, e is charge on an electron

Applying values in above equation we get:

F = (1.6 × 10⁻¹⁹ C)(18030 N/C)

  = 2.885 × 10⁻¹⁵ N

Therefore, the magnitude of the net force that the rods exert after an electron is released at point P is  2.885 × 10⁻¹⁵ N.

Learn more about electric force here:

<u>brainly.com/question/1634182</u>

#SPJ4      

8 0
2 years ago
Other questions:
  • if the flower pot in problem 3 falls off the windowsill and falls 20 meters downwards(i.e., is 10 meters from hitting the ground
    13·1 answer
  • A wave has a velocity of 24 m/s and a period of 3.0 s. Calculate the wavelength of the wave.
    10·1 answer
  • In and electric circuit, where do the electrons come from that flow in the circuit
    10·2 answers
  • A 77 g Frisbee is thrown from a point 0.99 m above the ground with a speed of 15 m/s. When it has reached a height of 1.3 m, its
    15·1 answer
  • Which is an example of a physical change
    5·1 answer
  • Which two minerals are commercial sources of iron. explain why the answer is a?
    11·1 answer
  • A 410-kg piano is being unloaded from a truck by rolling it down a ramp inclined at 25°. There is negligible friction and the ra
    8·1 answer
  • <img src="https://tex.z-dn.net/?f=%5Chuge%20%5Cfbox%20%5Cpink%20%7Bq%7D%5Chuge%20%5Cfbox%20%5Cgreen%20%7B%CF%85%7D%5Chuge%20%5Cf
    9·2 answers
  • What is the unit of work in SI system?
    10·2 answers
  • What is the acceleration of a proton moving with a speed of 6.5 m/s at right angles to a magnetic field of 1.4 T?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!