Answer:
The magnitude of the car's acceleration as it slows during braking is 36.81 m/s²
Explanation:
From the question, the given values are as follows:
Initial velocity, u = 90 m/s
final velocity, v = 0 m/s
distance, s = 110 m
acceleration, a = ?
Using the equation of motion, v² = u² + 2as
(90)² + 2 * 110 * a = 0
8100 + 220a = 0
220a = -8100
a = -8100/220
a = -36.81 m/s²
The value for acceleration is negative showing that car is decelerating to a stop. The magnitude of the car's acceleration as it slows during braking is therefore 36.81 m/s²
Mammals are endothermic vertebrates
Have hair and fur on the body
Have mammary glands
Four chambered hearts
Have sebaceous (fat secreting glands), sudoriferus (sweat), and scent glands.
Have heterodont dentation (different types of teeth)
Posses diaphragm
Posses one single jaw bone
Have three small bones in the middle of the ear
Answer:
t=0.47s
Explanation:
the ball has uniformly accelerated movement due to gravity
Vo=initial speed=4.6m/s
g=gravity=-9.8m/s^2
Vf=final speed=0, the player must wait for the ball to stop. so the final speed will be 0
we can use the following ecuation
T=(Vf-Vo)/g
T=(0-4.6)/-9.8m/s^2
T=0.47s
The resistance of the lamp is apparently 50V/2A = 25 ohms.
When the circuit is fed with more than 50V, we want to add
another resistor in series with the 25-ohm lamp so that the
current through the combination will be 2A.
In order for 200V to cause 2A of current, the total resistance
must be 200V/2A = 100 ohms.
The lamp provides 25 ohms, so we want to add another 75 ohms
in series with the lamp. Then the total resistance of the circuit is
(75 + 25) = 100 ohms, and the current is 200V/100 ohms = 2 Amps.
The power delivered by the 200V mains is (200V) x (2A) = 400 watts.
The lamp dissipates ( I² · R ) = (2² · 25 ohms) = 100 watts.
The extra resistor dissipates ( I² · R) = (2² · 75 ohms) = 300 watts.
Together, they add up to the 400 watts delivered by the mains.
CAUTION:
300 watts is an awful lot of power for a resistor to dissipate !
Those little striped jobbies can't do it.
It has to be a special 'power resistor'.
300 watts is even an unusually big power resistor.
If this story actually happened, it would be cheaper, easier,
and safer to get three more of the same kind of lamp, and
connect THOSE in series for 100 ohms. Then at least the
power would all be going to provide some light, and not just
wasted to heat the room with a big moose resistor that's too
hot to touch.
You may jump higher because the more the mass of the planet, the more gravitational force. There is less mass(and gravity) on Callisto so you wouldn’t be weighed down as much and can jump higher. Whereas on Jupiter there is more weight holding you down.