Two objects in physical contact with each other are in thermal equilibrium when they reach the same temperature and an exchange of heat energy no longer occurs.<span> According to HyperPhysics, the relation of thermal equilibrium follows the Zeroth Law of Thermodynamics, which states that “if two systems are at the same time in thermal equilibrium with a third system, they are in thermal equilibrium with each other.” </span>
Explanation:
Activation energy and reaction rate
The activation energy of a chemical reaction is closely related to its rate. Specifically, the higher the activation energy, the slower the chemical reaction will be. ... The released energy helps other fuel molecules get over the energy barrier as well, leading to a chain reaction.
Your question has been heard loud and clear.
An alpha particle , can move in any direction randomly. But with a magnetic field , we can deflect the alpha particle in any direction we want.
So , the magnetic field must be placed to the west of the alpha particle , so that the particle gets deflected and moves towards the north direction.
Thank you.
From the definition of apparent magnitude, we know that:

where:
m = apparent magnitude
F = corresponding flux
We also know that the flux is given by the formula:

where:
L = luminosity
d = distance
Therefore:

Now, let's apply these formulae to the same star (therefore, same luminosity), using apparent magnitude and absolute magnitude (which is defined as the apparent magnitude the star would have if it were at a distance of 10pc):

Now, let's solve for m:

= <span>

</span>
= 13
Hence,
the apparent magnitude of the star would be m = +13