Answer:
55.75g
Explanation:
From
m/M = CV
Where
m= required mass of solute
M= molar mass of solute
C= concentration of solution
V= volume of solution=675ml
Molar mass of solute= 3(23) + 31 + 4(16)= 69+31+64=164gmol-1
Number of moles of sodium ions present= 1.5× 675/1000= 1.01 moles
Since 1 mole of Na3PO4 contains 3 moles of Na+
It implies that 1.01/3 moles of Na3PO4 are present in solution= 0.34moles
mass of Na3PO4= number of moles × molar mass= 0.34 × 164 =55.75g
Answer:107.1 g, 124.1 g
Explanation:
The equation of the reaction is;
Al2S3(s) + 6H20(l) ----> 2Al(OH)3(s) + 3H2S(g)
Hence;
For Al2S3
Number of moles= reacting mass/molar mass
Number of moles = 158g/150gmol-1 =1.05 moles
If 1 mole of Al2S3 yields 3 moles of H2S
1.05 moles of Al2S will yield
1.05 × 3/1 = 3.15 moles
Mass of H2S = 3.15moles × 34 gmol-1 = 107.1 g
For water
Number of moles of water = 131g/18gmol-1= 7.3 moles
6 moles of water yields 3 moles of H2S
7.3 moles of water will yield 7.3 × 3/6 = 3.65 moles of H2S
3.65 moles × 34 gmol-1 =124.1 g
Answer:
Away from the central sulfur atom.
Explanation:
i. The dissolution of PbSO₄ in water entails its ionizing into its constituent ions:

---
ii. Given the dissolution of some substance
,
the Ksp, or the solubility product constant, of the preceding equation takes the general form
.
The concentrations of pure solids (like substance A) and liquids are excluded from the equilibrium expression.
So, given our dissociation equation in question i., our Ksp expression would be written as:
.
---
iii. Presumably, what we're being asked for here is the <em>molar </em>solubility of PbSO4 (at the standard 25 °C, as Ksp is temperature dependent). We have all the information needed to calculate the molar solubility. Since the Ksp tells us the ratio of equilibrium concentrations of PbSO4 in solution, we can consider either [Pb2+] or [SO4^2-] as equivalent to our molar solubility (since the concentration of either ion is the extent to which solid PbSO4 will dissociate or dissolve in water).
We know that Ksp = [Pb2+][SO4^2-], and we are given the value of the Ksp of for PbSO4 as 1.3 × 10⁻⁸. Since the molar ratio between the two ions are the same, we can use an equivalent variable to represent both:

So, the molar solubility of PbSO4 is 1.1 × 10⁻⁴ mol/L. The answer is given to two significant figures since the Ksp is given to two significant figures.
Answer:
1. 72.9 atm
2. 0.43937 K
Explanation:
1. Gray- lussacs law is p1/t1=p2/t2 so we use this formula to figure it out by filling in the variables and solving
p1=45.0 atm
t1=323 K
p2= ?
t2=523 K
Now we fill in this in the formula and solve - 45.0 atm/ 323 K = p2/ 523 K
and now we solve for p2 by multiplying 535k by each side to give us p2
2. Using the same formula we get 10.0atm/? = 12.0 atm/ 273.15 k and we divide both sides by 10.0 atm