The velocity of the canoe is 1.7 m/s.
<h3>What is momentum?</h3>
Momentum in physics is the products of mass and velocity. Now we have to find momentum with the formula; p = mv
a) Initial momentum = (15)8 m/s + 135 = 255 Kgms-1
b) Since momentum is conserved, the total momentum after throwing the anchor is still 255 Kgms-1
c) The final velocity of the boat is obtained from;
255 Kgms-1 = (15Kg + 135 Kg) v
v = 255 Kgms-1/(15Kg + 135 Kg)
v = 1.7 m/s
Learn more about momentum: brainly.com/question/904448
Answer:
<em>Because </em><em>of </em><em>the </em><em>given </em><em>stranded</em><em> </em><em>wires </em><em>is </em><em>that </em><em>it's </em><em>thinner </em><em>there </em><em>are </em><em>even </em><em>more </em><em>air </em><em>gaps </em><em>and </em><em>a </em><em>greater </em><em>surface</em><em> </em><em>area </em><em>in </em><em>the </em><em>individual</em><em> </em><em>stranded</em><em> wires</em><em> </em><em>then </em><em>therefore </em><em>it </em><em>carries </em><em>less </em><em>current </em><em>than </em><em>similar </em><em>solid </em><em>wires </em><em>can </em><em>with</em><em> </em><em>each</em><em> </em><em>type </em><em>of </em><em>wire </em><em>,</em><em> insulations</em><em> </em><em>technologies </em><em>can </em><em>greatly</em><em> </em><em>assist </em><em> </em><em>in </em><em>reducing</em><em> </em><em>power </em><em>dissipation</em><em>.</em>
Answer:
The objects morion will remain the same
Explanation:
Answer:
- 0.09 % of the original radioactive nucllde its left after 10 half-lives
- It will take 241,100 years for 10 half-lives of plutonium-239 to pass.
Explanation:
The equation for radioactive decay its:
,
where N(t) its quantity of material at time t,
its the initial quantity of material and
its the mean lifetime of the radioactive element.
The half-life
its the time at which the quantity of material its the half of the initial value, so, we can find:

so:




So, after 10 half-lives, we got:




So, we got that a 0.09 % of the original radioactive nucllde its left.
Putonioum-239 has a half-life of 24,110 years. So, 10 half-life will take to pass

It will take 241,100 years for 10 half-lives of plutonium-239 to pass.