In order to compute the torque required, we may apply Newton's second law for circular motion:
Torque = moment of inertia * angular acceleration
For this, we require the angular acceleration, α. We may calculate this using:
α = Δω/Δt
The time taken to achieve rotational speed may be calculated using:
time = 1 revolution * 2π radians per revolution / 3.5 radians per second
time = 1.80 seconds
α = (3.5 - 0) / 1.8
α = 1.94 rad/s²
The moment of inertia of a thin disc is given by:
I = MR²/2
I = (0.21*0.1525²)/2
I = 0.002
τ = 1.94 * 0.002
τ = 0.004
The torque is 0.004
The right answer for the question that is being asked and shown above is that: "The image produced is virtual and of the same size as the object." the image if the object is shifted closer to the lens to a point one focal length away from it is that The image produced is virtual and of the same size as the object.<span>
</span>
Between the top of the first and the top of the second loop, the coaster has lost potential energy = mgh, where h = 22.2 - 15 = 7.2m
This energy would have converted to Kinetic. Write out an equation and the masses will cancel out. Does that hint help you to find the solution? If not, I will give you another hint.
Answer:
it just pulls them at the same time
Explanation:
Answer:
stars share a gravitational force with the galaxy while nearby galaxies do not share a gravitational field.
Explanation:
stars will not collide because they are bound by a gravitational orbit around the galaxy