Answer:
The evolutionary success of bats is accredited to their ability, as the only mammals, to fly and navigate in darkness by echolocation, thus filling a niche exploited by few other predators. Over 90% of all bat species use echolocation to localize obstacles in their environment by comparing their own high frequency sound pulses with returning echoes. The ability to localize and identify objects without the use of vision allows bats to forage for airborne nocturnal insects, but also for a diverse range of other food types including motionless perched prey or non-animal food items.
The agility and precision with which bats navigate and forage in total darkness, is in large part due to the accuracy and flexibility of their echolocation system. The echolocation clicks of the few echolocating Pteropodidae (Rousettus) are fundamentally different from the echolocation sounds produced in the larynx that we focus on here, and thus not part of this review. Many studies have shown that bats adapt their echolocation calls to a variety of conditions, changing duration and bandwidth of each call and the rate at which calls are emitted in response to changing perceptual demands . In recent years the intensity and directionality of echolocation signals has received increasing research attention and it is becoming evident that these parameters also play a major role in how bats successfully navigate and forage. To perceive an object in its surroundings, a bat must ensonify the object with enough energy to return an audible echo. Hence, the intensity and duration of the emitted signal act together to determine how far away a bat can echolocate an object. Equally important is signal directionality. Bat echolocation calls are directional, i.e., more call energy is focused in the forward direction than to the sides (Simmons, 1969; Shimozawa et al., 1974; Mogensen and Møhl, 1979; Hartley and Suthers, 1987, 1989; Henze and O'Neill, 1991). An object detectable at 2 m directly in front of the bat may not be detected if it is located at the same distance but off to the side. Consequently, at any given echolocation frequency and duration, it is the combination of signal intensity and signal directionality that defines the search volume, i.e., the volume in space where the bat can detect an object.
The aim of this review is to summarize current knowledge about intensity and directionality of bat echolocation calls, and show how both are adapted to habitat and behavioral context. Finally, we discuss the importance of active motor-control to dynamically adjust both signal intensity and directionality to solve the different tasks faced by echolocating bats.
Explanation:
Answer:
option C
Explanation:
given,
Q = +3.2 x 10⁻¹⁹ C
E = 5.0 X 10⁵ V/m
B = 0.80 T
ion's acceleration is zero
when acceleration is zero the magnitude of both the forces becomes equal.
q E = q V B
v = 
v= 
v = 6.25 × 10⁵ m/s ≈ 6.3 × 10⁵ m/s
hence, the correct answer is option C
Answer:
a) F₁ = 267.3 N, N₁ = 1300 N, b) μ = 0.324
Explanation:
For this exercise we use the rotational equilibrium condition, we have a reference system is the floor and the anticlockwise rotations as positive, in the adjoint we can see a diagram of the forces
let's use subscript 1 for the ladder and 2 for the firefighter
∑ τ = 0
-W₁ x₁ - W₂ x₂ + N₁ y = 0
N₁ =
(1)
the center of mass of the ladder is at its geometric center,
d = L / 2 = 15/2 = 7.5 m
cos 60 = x₁ / d₁
x₁ = d₁ cos 60
x₁ = 7.5 cos 60
x₁ = 3.75 m
for the firefighter d₂ = 4 m
cos 60 = x₂ / d₂
x₂ = d₂ cos 60
x₂ = 4 cos 60 = 2 m
for the fulcrum d₃ = 15 m
sin 60 = y / d₃
y = d₃ sin 60
y = 15 sin 60
y = 13 m
we look for the Normal by substituting in equation 1
N₂ =
N₂ = 267.3 N
now let's use the translational equilibrium relations
X axis
F₁ - N₂ = 0
F₁ = N₂
F₁ = 267.3 N
Axis y
N₁ - W₁ -W₂ = 0
N₁ = W₁ + W₂
N₁ = 500 + 800
N₁ = 1300 N
b) for this case change the firefighter's distance d₂ = 9 m
x₂ = 9 cos 60
x₂ = 4.5 m
we substitute in 1
N₂ = \frac{500 \ 3.75 \ + 800 \ 4.5}{13}
N₂ = 421.15 N
of the translational equilibrium equation on the x-axis
fr = F₁ = N₂
fr = 421.15 N
friction force has the expression
fr = μ N
in this case the reaction of the Earth to the support of the ladder is N1 = 1300N
μ = fr / N₁
μ = 421.15 / 1300
μ = 0.324
Answer:
The options are
a. Sally is a very creative kind of person who likes to build things.
b. Jerry only works because he receives a very large income.
c. Rikki is usually shy, but at work she appears to be quite outgoing.
d. Maury gives money to charities because he wants other people to think he is very generous.
The answer is c. Rikki is usually shy, but at work she appears to be quite outgoing.
Lewin's interactionist perspective explains that an individual’s behavior is usually dependent on his personal behavior/ trait and the environment. The best option is that Rikki is usually shy which is her personal behavior but at work she appears to be quite outgoing due to her environment.
Answer:
true i think
Explanation:
The amplitude of a sound wave determines its loudness or volume. A larger amplitude means a louder sound, and a smaller amplitude means a softer sound. In Figure 10.2 sound C is louder than sound B. The vibration of a source sets the amplitude of a wave.