Answer:
The metal atoms in the wire can't move, but their outer electrons can. The force pushes those electrons and they move to further parts of the wire, trying to reach the other end. As the electrons move away, new electrons flow into the wire through the battery to take their place.
Explanation:
Answer:
The maximum height will be 7408.8 meters
Explanation:
final velocity = initial velocity + acceleration × time
final velocity = 0 m/s + 58.8 m/s^2 ×6 s
Final velocity = 352.8 m/s
final velocity ^2 = initial velocity ^2 + 2 × acceleration × displacement
(352.8)^2 = (0)^2 + 2×58.8 ×displacement
Solving for displacement,
height = 1058.4 meters.
After this, the rocket is in free fall, we can use the same equation.
final velocity ^2 = initial velocity ^2 + 2 ×acceleration×displacement
final velocity = 0
0^2 = 352.8^2 + 2×(-9.8)×displacement
displacement = 6350.4 meters
the maximum height will be 7408.8 meters
Answer: The correct answer is option b.
Explanation: We are given that the rocket is at rest initially final velocity is 445m/s.
The acceleration of the rocket is 
To calculate the distance of rocket, we use third equation of motion, which is:

where, v = final velocity = 445m/s
u = initial velocity = 0m/s
a = acceleration = 
s = distance = ? m
Putting values in above equation, we get:

Answer:
A 1.56 see below
Explanation:
I will assume the 45 degree force is upward
vertical component = 600 sin 45 = 424.26 N
added to the other vertical force will total 824.26 N
F = ma
824.26 = 100 * a shows a = 8.24 m/s upward
Now we have to assume the mass is ALSO acted on by gravity and this value is given as 9.8 ( so downward is positive)
9.81 - 8.24 = 1.56 m/s^2
So....
imagine the x and y axis or draw it on a piece of paper, a white board or even on your wall if you like. I'm kidding just draw it on a piece of paper
50m up and 20m down
the dog's displacement is 50 - 20 which is 30
your answer is 30m north