1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
elena-s [515]
3 years ago
14

#1 “A persons body continuing to move forward even though the car comes to a sudden stop” Which newtons Law Do they pertain? A:

First Law B: Second Law C: Third Law
#2 “A fighter Pilot Feels Massive Amounts of forcé when his plane turns sharply” Which Newton Law?

#3 “ A Paddle wheel boat pushed on water and the water pushes back causing the boat to move” Which Netwons Law?
Physics
1 answer:
Aloiza [94]3 years ago
3 0
<span>#1 “A persons body continuing to move forward even though the car comes to a sudden stop” Which newtons Law Do they pertain?
A: First Law </span>

<span>#2 “A fighter Pilot Feels Massive Amounts of forcé when his plane turns sharply” Which Newton Law?
A: First Law.
</span><span><span>You were following the Newton's first law and kept your velocity straight until you departed from linear motion when you turn sharply; you are forced to follow the curve. <span>The force that the jet exerts on you is called centripetal force and is suitable for the center of curvature of the forced traveling path.</span></span>

</span><span>#3 “ A Paddle wheel boat pushed on water and the water pushes back causing the boat to move” Which Netwons Law?
C: Third Law</span>


You might be interested in
mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released from rest from a point 2 feet below the equi
valina [46]

Answer:

The answer is

"x(t)= e^\frac{-t}{2}((\frac{-4}{3})\cos\frac{\sqrt{47}}{2}t- \frac{-64\sqrt{47}}{141} \sin\frac{\sqrt{47}}{2}t)+\frac{10}{3}(\cos(3t)+ \sin (3t))".

Explanation:

Taking into consideration a volume weight = 16 pounds originally extends a springs \frac{8}{3} feet but is extracted to resting at 2 feet beneath balance position.

The mass value is =

W=mg\\m=\frac{w}{g}\\m=\frac{16}{32}\\m= \frac{1}{2} slug\\

The source of the hooks law is stable,

16= \frac{8}{3} k \\\\8k=16 \times 3 \\\\k=16\times \frac{3}{8} \\\\k=6 \frac{lb}{ft}\\\\

Number \frac{1}{2}  times the immediate speed, i.e .. Damping force

\frac{1}{2} \frac{d^2 x}{dt^2} = -6x-\frac{1}{2}\frac{dx}{dt}+10 \cos 3t \\\\\frac{1}{2}  \frac{d^2 x}{dt^2}+ \frac{1}{2}\frac{dx}{dt}+6x =10 \cos 3t \\ \\\frac{d^2 x}{dt^2} +\frac{dx}{dt}+12x=20\cos 3t \\\\

The m^2+m+12=0 and m is an auxiliary equation,

m=\frac{-1 \pm \sqrt{1-4(12)}}{2}\\\\m=\frac{-1 \pm \sqrt{47i}}{2}\\\\\ m1= \frac{-1 + \sqrt{47i}}{2} \ \ \ \ or\ \ \ \ \  m2 =\frac{-1 - \sqrt{47i}}{2}

Therefore, additional feature

x_c (t) = e^{\frac{-t}{2}}[C_1 \cos \frac{\sqrt{47}}{2}t+ C_2 \sin \frac{\sqrt{47}}{2}t]

Use the form of uncertain coefficients to find a particular solution.  

Assume that solution equation,

x_p = Acos(3t)+B sin(3t) \\x_p'= -3A sin (3t) + 3B cos (3t)\\x_p}^{n= -9 Acos(3t) -9B sin (3t)\\

These values are replaced by equation ( 1):

\frac{d^2x}{dt}+\frac{dx}{dt}+ 12x=20 \cos(3t) -9 Acos(3t) -9B sin (3t) -3Asin(3t)+3B cos (3t) + 12A cos (3t) + 12B sin (3t)\\\\3Acos 3t + 3B sin 3t - 3Asin 3t + 3B cos 3t= 20cos(3t)\\(3A+3B)cos3t -(3A-3B)sin3t = 20 cos (3t)\\

Going to compare cos3 t and sin 3 t coefficients from both sides,  

The cost3 t is 3A + 3B= 20 coefficients  

The sin 3 t is 3B -3A = 0 coefficient  

The two equations solved:

3A+3B = 20 \\\frac{3B -3A=0}{}\\6B=20\\B= \frac{20}{6}\\B=\frac{10}{3}\\

Replace the very first equation with the meaning,

3B -3A=O\\3(\frac{10}{3})-3A =0\\A= \frac{10}{3}\\

equation is

x_p\\\\\frac{10}{3} cos (3 t) + \frac{10}{3} sin (3t)

The ultimate plan for both the equation is therefore

x(t)= e^\frac{-t}{2} (c_1 cos \frac{\sqrt{47}}{2}t)+c_2\sin\frac{\sqrt{47}}{2}t)+\frac{10}{3}\cos (3t)+\frac{10}{3}\sin (3t)

Initially, the volume of rest x(0)=2 and x'(0) is extracted by rest i.e.  

Throughout the general solution, replace initial state x(0) = 2,

Replace x'(0)=0 with a general solution in the initial condition,

x(t)= e^\frac{-t}{2} [(c_1 cos \frac{\sqrt{47}}{2}t)+c_2\sin\frac{\sqrt{47}}{2}t)+\frac{10}{3}\cos (3t)+\frac{10}{3}\sin (3t)]\\\\

x(t)= e^\frac{-t}{2} [(-\frac{\sqrt{47}}{2}c_1\sin\frac{\sqrt{47}}{2}t)+ (\frac{\sqrt{47}}{2}c_2\cos\frac{\sqrt{47}}{2}t)+c_2\cos\frac{\sqrt{47}}{2}t)  +c_1\cos\frac{\sqrt{47}}{2}t +c_2\sin\frac{\sqrt{47}}{2}t + \frac{-1}{2}e^{\frac{-t}{2}} -10 sin(3t)+10 cos(3t) \\\\

c_2=\frac{-64\sqrt{47}}{141}

x(t)= e^\frac{-t}{2}((\frac{-4}{3})\cos\frac{\sqrt{47}}{2}t- \frac{-64\sqrt{47}}{141} \sin\frac{\sqrt{47}}{2}t)+\frac{10}{3}(\cos(3t)+ \sin (3t))

5 0
3 years ago
A hockey puck is sliding across a frozen pond with an initial speed of 9.3 m/s. It comes to rest after sliding a distance of 42.
kondaur [170]

Answer:

The coefficient of kinetic friction between the puck and the ice is 0.11

Explanation:

Given;

initial speed, u = 9.3 m/s

sliding distance, S = 42 m

From equation of motion we determine the acceleration;

v² = u² + 2as

0 = (9.3)² + (2x42)a

- 84a = 86.49

a = -86.49/84

|a| = 1.0296

F_k = \mu_k N = ma

where;

Fk is the frictional force

μk is the coefficient of kinetic friction

N is the normal reaction = mg

μkmg = ma

μkg = a

μk = a/g

where;

g is the gravitational constant = 9.8 m/s²

μk = a/g

μk = 1.0296/9.8

μk = 0.11

Therefore, the coefficient of kinetic friction between the puck and the ice is 0.11

3 0
3 years ago
In 10 seconds a car accelerates 4m/s^2 to 50
DanielleElmas [232]

Answer:

10m/s

Explanation:

using the formula a=v-u

t

4 0
2 years ago
A microwave oven operates at 2.4 GHz with an intensity inside the oven of 2300 W/m2 . Part A What is the amplitude of the oscill
Tasya [4]

Answer:

The amplitude of the oscillating electric field is 1316.96 N/C

Explanation:

Given;

frequency of the wave, f = 2.4 Hz

intensity of the wave, I = 2300 W/m²

Amplitude of oscillating magnetic field is given by;

B_o = \sqrt{\frac{2\mu_o I}{c} }

where;

μ₀ is permeability of free space = 4π x 10⁻⁷ m/A

I is intensity of wave

c is speed of light = 3 x 10⁸ m/s

B_o = \sqrt{\frac{2*4\pi *10^{-7}*2300}{3*10^8} } \\\\B_o = 4.3899 *10^{-6} \ T

The amplitude of the oscillating electric field is given by;

E₀ = cB₀

E₀ = 3 x 10⁸ x 4.3899 x 10⁻⁶

E₀ = 1316.96 N/C

Therefore, the amplitude of the oscillating electric field is 1316.96 N/C

3 0
2 years ago
How can force act on an object that is not changing its motion?
MatroZZZ [7]

Answer Balanced force // Force and Motion Equal forces acting in opposite directions are called balanced forces

Explanation:

6 0
2 years ago
Read 2 more answers
Other questions:
  • a 15kg television sits on a shelf at a height of 0.3 m how much gravitational potential energy is added to the television when i
    14·1 answer
  • Two tuning forks, 254 Hz. and 260 Hz., are struck simultaneously. How many beats will be heard?
    9·1 answer
  • What is a force, motion and energy??​
    7·2 answers
  • Most ocean waves obtain their energy and motion from _____.
    9·1 answer
  • Why will a sheet of paper fall slower than one that is crumbled into a ball
    6·2 answers
  • A horizontal line on a distance-time graph means the object is
    13·1 answer
  • Describe how wavelength is defined for transverse waves and for longitudinal waves.
    10·1 answer
  • Pilings are driven into the ground at a building site by dropping a 2250 kg object onto them. What change in gravitational poten
    10·1 answer
  • 5 meddi muttasıl örnek
    15·2 answers
  • What happens when sound waves move faster?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!