The highest point<span> of the </span>pendulums<span> swing is when the potential energy is at its </span>highest<span> and the </span>kinetic energy<span> is at its lowest.</span>
Answer:
As an additional security measure in an AA&E storage facilities, securing drainage structures must be considered if their cross section is greater than 96 inches and any dimension is greater than 6 inches, they must be barred and welded at the intersections to prevent any human from crawling into the area.
Explanation:
U.S. national security relys on ensuring DoD sensitive or classified assets such as classified material, arms, ammunition, and explosives (AA&E) and nuclear weapons, in properly safeguard facilites and storage containers, voiding DoD assets loss or compromise and additional to supplemental intrusion detection systems and guard
patrols, security lighting, communications, fences and clear zones, drainage structures, key control, and other security measures required to protect AA&E.
The NUCLEUS is the center of the atom. it contains protons and NEUTRONS
protons have a POSITIVE charge
neutrons have a NEUTRAL charge
electrons have a NEGATIVE charge
Answer:
The flow rate is 
Explanation:
From the question we are told that
The velocity is 
The diameter of the pipe is 
The radius of the pipe is mathematically represented as

substituting values


The flow rate is mathematically represented as

Where is the cross-sectional area of the pipe which is mathematically evaluated as

substituting values


So


Answer:
(a) v = 65.35 m/s
(b) ac = 82.16 m/s²
Explanation:
Kinematic of the blades of the wind turbine
The blades of the wind turbine describe circular motion and the formulas that apply to this movement are as follows:
v = ω * R Formula (1)
Where:
v : tangential velocity (m/s)
ω : angular velocity (rad/s)
R : radius of the particle path (m)
The velocity vector is tangent at each point to the trajectory and its direction is that of movement. This implies that the movement has centripetal acceleration (ac):
ac = ω²* R Formula (1)
ac : centripetal acceleration (m/s²)
Data:
ω= 12 rpm = 12 rev/min
1 rev = 2π rad
1 min = 60 s
ω= 12 rev/min = 12 (2π rad)/(60 s)
ω = 1.257 rad/s
R = 52 m
(a)Tangential velocity at the tip of a blade (v)
We apply the formula (1)
v = ω* R
v = ( 1.257)* (52) = 65.35 m/s
(a) Centripetal acceleration at the tip of a blade (ac)
We apply the formula (2)
ac = ω²*R
ac = ( 1.257)²* (52) = 82.16 m/s²