Answer:
570 N
Explanation:
Draw a free body diagram on the rider. There are three forces: tension force 15° below the horizontal, drag force 30° above the horizontal, and weight downwards.
The rider is moving at constant speed, so acceleration is 0.
Sum of the forces in the x direction:
∑F = ma
F cos 30° - T cos 15° = 0
F = T cos 15° / cos 30°
Sum of the forces in the y direction:
∑F = ma
F sin 30° - W - T sin 15° = 0
W = F sin 30° - T sin 15°
Substituting:
W = (T cos 15° / cos 30°) sin 30° - T sin 15°
W = T cos 15° tan 30° - T sin 15°
W = T (cos 15° tan 30° - sin 15°)
Given T = 1900 N:
W = 1900 (cos 15° tan 30° - sin 15°)
W = 570 N
The rider weighs 570 N (which is about the same as 130 lb).
Answer:
b.it depends on the distance it falls
Answer:
muscular dystrophy and myasthenia gravis
Answer: It's hard to say without characterizing the collision. But it will be either A if the collision is totally in-elastic, or B if the collision is totally elastic. It could be anywhere in between for partially elastic collisions.
Explanation:
momentum is conserved, so initial system momentum will be left to right.
The velocity of the center of mass is 50(5) / 550 = 0.4545... m/s
In an elastic collision, the lead ball will move off at twice that speed or 0.91 m/s to the right.
The steel ball will bounce back and move away at 0.91 - 5 = -4.1 m/s . The negative sign indicates the steel ball has reversed course and has negative momentum
In a totally in-elastic collision, both balls would move to the right at 0.45 m/s. The steel ball will still have positive momentum.
A boiling pot of water (the water travels in a current throughout the pot), a hot air balloon (hot air rises, making the balloon rise) , and cup of a steaming, hot liquid (hot air rises, creating steam) are all situations where convection occurs.