1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Roman55 [17]
3 years ago
13

A few years ago, Serena Williams dived to hit a tennis ball right after it bounced off the ground. The ball bounced on the groun

d 11.7 m from the net, and after Serena hit the ball it flew over the 0.950 m high net and bounced in her opponent's court about 1.21 s after she hit it. If there had been no gravity, the ball would have been 2.63 m higher than the net when it crossed over. How fast was the ball moving when it left Serena's racket?

Physics
1 answer:
pshichka [43]3 years ago
7 0

Answer:

The initial velocity of the ball was 20 m/s

Explanation:

Please, see the figure for a description of the problem.

The initial velocity vector can be written as follows:

v0 = (v0x, v0y)

where:

v0 = initial velocity

v0x = horizontal component of the initial velocity

v0y = vertical component of the initial velocity

The position and velocity of the ball at time "t" are described by the vector "r" and "v" respectively:

r = (x0 + v0x * t, y0 + v0y * t + 1/2 * g * t²)

v = (v0x, v0y + g*t)

Where:

r = position vector of the ball

x0 = initial horizontal position

t = time

y0 = initial vertical position

g = acceleration due to gravity

v = velocity vector

Considering the center of our system of reference as the point at which the ball left Serena´s racket, x0 and y0 = 0.

We know that at a time t = 1.21 s the y-component of the position vector must be 0 (see "r final" in the figure). Then:

y0 + v0y * t + 1/2 * g * t² = 0          y0= 0

v0y * 1.21 s + 1/2 * (-9.8 m/s²) * (1.21 s)² = 0

v0y = -(1/2 * (-9.8 m/s²) * (1.21 s)²) / 1.21 s

v0y = 1/2 * 9.8 m/s² * 1.21 s

v0y = 5.93 m/s

If we see in the figure the trajectory of the ball if there had been no gravity ("s"), we will notice that it is a stright line with a slope of:

Δy/Δx = (0.95m(y) + 2.63m(y)) / 11.7 m(x) = 0.31 m(y) / m(x)

This slope means that the ball will go up 0.31 m for every meter it goes right.

Then, if initially the ball goes up 5.93 m every second, it will go right

(5.93 m(y) * (1 m(x) / 0.31 m(y)) = 19.1 m(x). Then, v0x = 19.1 m/s

The vector initial velocity will be:

v0 = (19.1 m/s, 5.93 m/s)

magnitude of v0 =|v0| = \sqrt{(19.1m/s)^{2}+(5.93m/s)^{2}}= 20.0 m/s

Another way to solve this is by using the equation for velocity:

We know that when the ball passes over the net, the vertical velocity is 0. Then, we can calculate the time at which the ball passes over the net and use that time to obtain v0x from the equation for position, since we know that at that time the x-component of the position is 11.7 m.

When the ball is over the net:

v0y + g*t = 0

t = -v0y/g = -5.93 m/s/-9.8 m/s² = 0.61 s.

Notice that, since the trajectory is a parabola, knowing the final time we could easily calculate the time at which the ball passes the net by dividing that final time by 2: 1.21 s / 2 = 0.61 s

Then, using this time in the equation for position:

v0x * t = 11.7 m

v0x = 11.7 m / 0.61 s = 19.2 m/s which is aproximately the same as the obtained above.

You might be interested in
Help please hurry! ‼️‼️‼️‼️‼️‼️‼️‼️‼️‼️‼️‼️‼️‼️
eimsori [14]
IV - Temperature
DV - Light intensity
8 0
3 years ago
As the concentration of a solute in a solution increases, the freezing point of the solution ________ and the vapor pressure of
kykrilka [37]

Answer:

As the concentration of a solute in a solution increases, the freezing point of the solution <u><em>decrease </em></u>and the vapor pressure of the solution <em><u>decrease </u></em>.

Explanation:

Depression in freezing point :

\Delta T_f=K_f\times m

where,

\Delta T_f =depression in freezing point =  

K_f = freezing point constant  

m = molality  ( moles per kg of solvent) of the solution

As we can see that from the formula that higher the molality of the solution is directly proportionate to the depression in freezing point which means that:

  1. If molality of the solution in high the depression in freezing point of the solution will be more.
  2. If molality of the solution in low the depression in freezing point of teh solution will be lower .

Relative lowering in vapor pressure of the solution is given by :

\frac{p_o-p_s}{p_o}=\chi_{solute}

p_o = Vapor pressure of pure solvent

p_s  = Vapor pressure of solution

\chi_{solute} = Mole fraction of solute

p_s\propto \frac{1}{\chi_{solute}}

Vapor pressure of the solution is inversely proportional to the mole fraction of solute.

  1. Higher the concentration of solute more will the be solute's mole fraction and decrease in vapor pressure of the solution will be observed.
  2. lower the concentration of solute more will the be solute's mole fraction and increase in vapor pressure of the solution will be observed.
8 0
3 years ago
If a 54 kg sprinter can accelerate from a standing start to a speed of 10 m/s in 3 s, what average power is generated?
lora16 [44]

Answer:

Power, P = 600 watts

Explanation:

It is given that,

Mass of sprinter, m = 54 kg

Speed, v = 10 m/s

Time taken, t = 3 s

We need to find the average power generated. The work done divided by time taken is called power generated by the sprinter i.e.

P=\dfrac{W}{t}

Work done is equal to the change in kinetic energy of the sprinter.

P=\dfrac{\dfrac{1}{2}mv^2}{t}

P=\dfrac{\dfrac{1}{2}\times 54\ kg\times (10\ m/s)^2}{3\ s}

P = 900 watts

So, the average power generated by the sprinter is 900 watts. Hence, this is the required solution.

3 0
3 years ago
A tornado warning means that the current weather conditions could produce a tornado. True or False
WARRIOR [948]

true because it means that the cloud formation of a tornado has been already spotted.

4 0
3 years ago
Read 2 more answers
brad rides his bike 20 km . he covers the distance in 45 minutes (0.75 hours) what is his speed in kilometers per hours ? a. 44
hoa [83]
D. 27 km/hr :) Just msg if you need any more help :)
7 0
3 years ago
Other questions:
  • Which kinds of objects emit visible light in the electromagnetic spectrum?
    12·2 answers
  • How is the ionization energy, E, related to a group of elements?
    14·2 answers
  • Which statement corresponds to emission spectra?
    7·1 answer
  • What is the original source of energy that drives the wind?
    11·1 answer
  • The energy that generates wind comes from what source?
    8·1 answer
  • Which statement shows how to correctly convert from the mass of a compound in grams to the amount of that compound in moles?
    9·1 answer
  • Drag the tiles to the correct boxes to complete the pairs.
    5·2 answers
  • What is the mechanical advantage of a pulley system​
    14·1 answer
  • Science, who ever answers this will get a brainlest
    12·1 answer
  • (15 Points)
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!