Heat required to change the phase of ice is given by
Q = m* L
here
m = mass of ice
L = latent heat of fusion
now we have
m = 45 kg
L = 334 KJ/kg
now by using above formula


In KJ we can convert this as

so the correct answer is D option
It’s not arrested because if you look closer it’s plug walk I don’t even understand how it talk tho
Answer:
d = 19.796m
Explanation:
Since the ball is in the air for 4.02 seconds, the ball should reach the maximum point from the ground in half the total time, therefore, t=2.01s to reach maximum height. At the maximum height, the velocity in the y-direction is 0.
So we know t=2.01, vi=0, g=a=9.8m/s and we are solving for d.
Next, you look for a kinematic equation that has these parameters and the one you should choose is:

Now by substituting values in, we get
d = 19.796m
Answer:
First law of motion
Explanation:
I say this because this example shows how an object is staying persistent unless it's compled to change
(not sure)
Answer:
Here is an image attached with similar questions.
The correct answer is D where acceleration is function of time.
Explanation:
The force acting on the object is constant.
There is no change in the application of forces.
And we know that Force is the product of acceleration and masses.
Newtons second law: 
Regarding mass we know that it can neither be created nor destroyed.
So in
we have two constant terms, constant divided by constant will give the same result as 
There is no change in acceleration
with respect to time
.
So the most appropriate graph where time (t) is changing on
but acceleration doesn't changes is D.
The graph will be similar to
and will be horizontal to the
.
Option D depicts the same.