To solve this problem it is necessary to apply the concepts related to the Period based on gravity and length.
Mathematically this concept can be expressed as

Where,
l = Length
g = Gravitational acceleration
First we will find the period that with the characteristics presented can be given on Mars and then we can find the length of the pendulum at the desired time.
The period on Mars with the given length of 0.99396m and the gravity of the moon (approximately
will be



For the second question posed, it would be to find the length so that the period is 2 seconds, that is:



Therefore, we can observe also that the shorter distance would be the period compared to the first result given.
Answer:
0.04455 Hz
Explanation:
Parameters given:
Wavelength, λ = 6.5km = 6500m
Distance travelled by the wave, x = 8830km = 8830000m
Time taken, t = 8.47hours = 8.47 * 3600 = 30492 secs
First, we find the speed of the wave:
Speed, v = distance/time = x/t
v = 8830000/30492 = 289.58 m/s
Frequency, f, is given as velocity divided by wavelength:
f = v/λ
f = 289.58/6500
f = 0.04455 Hz
Explanation:
It is given that,
Initial speed of a golfer, u = 29 m/s
If it travels the maximum possible distance before landing. It means that it is projected at an angle of 45 degrees.
(a) We need to find the time spent by the ball in the air. It can be calculated by using second equation of motion.

Here,
a = -g
s = 0 (it is displacement and it is equal to 0 as the ball lands on the green).
So,

So, it will take 4.184 seconds in the air.
(b) let x is the longest hole in one that the golfer can make if the ball does not roll when it hits the green. It can be given by :

Hence, this is the required solution.
π=iMRT
Where, π is Osmotic pressure,
i=1 for non-electrolytes,
M is molar concentration of dissolved species (units of mol/L)
R is the ideal gas constant = 0.08206 L atm mol⁻¹K⁻¹,
T is the temperature in Kelvin(K),
Here, to calculate M convert into standard units mg tog, ml to L, c to Kelvin
M= (
*10⁻³ )/ 0.175 =(5.987 *10⁻⁵)mol / 0.175L = 34.21*10⁻⁵ mol/L
π=iMRT=(1)*(34.21*10⁻⁵)*(0.08206)*(298.15)=837×10⁻⁵= 8.37×10⁻³ atm
=6.36 torr
(1 atm=760 torr, 1 Kelvin =273.15 °C, 1L=1000ml, 1g=1000mg)
Answer
Correct option is B that is Desktop computer
Explanation
Option A
This option is not correct because in a Locomotive train steam, diesel or batteries are used.
Option B
It is Correct option because in desktop a transformer is there which uses AC current. Most of us have desktop and we used AC current to operate it we don't have any other option to operate a desktop except AC current
Option C
This is not correct option because in a car we used petrol, deisel, gas or DC batteries.
Option D
Option D is not correct option because to operate portable media player we can use both alternating current or batteries
Option
This is not correct option because in flashlight we uses DC batteries
Hope this answer will help you