Answer:
f. Sn^4+
c. second
e. Al^3+
d. third
Explanation:
This question comes from a quantitative analysis showing the flowchart of a common scheme for identifying cations.
Now, from the separation scheme, Let's assume that Sn⁴⁺ & Al³⁺ were given; Then, Yes, the separation will work.
However, there will be occurrence of precipitation after the 1st step1.
So, the <u>Sn⁴⁺</u> cation will precipitate after the <u>second </u>step. Then the <u>Al³⁺</u> cation will precipitate after the <u>third</u> step.
Answer:
0.800 mol
Explanation:
We have the amounts of two reactants, so this is a limiting reactant problem.
We know that we will need a balanced equation with moles of the compounds involved.
Step 1. <em>Gather all the information</em> in one place.
C₃H₈ + 5O₂ ⟶ 3CO₂ + 4H₂O
n/mol: 4.00 4.00
===============
Step 2. Identify the <em>limiting reactant
</em>
Calculate the <em>moles of CO₂</em> we can obtain from each reactant.
<em>From C₃H₈:</em>
The molar ratio of CO₂: C₃H₈ is 3:1
Moles of CO₂ = 4.00 × 3/1
Moles of CO₂ = 12.0 mol CO₂
<em>From O₂</em>:
The molar ratio of CO₂: O₂ is 3:5.
Moles of CO₂ = 4.00 × ⅗
Moles of CO₂ = 2.40 mol CO₂
O₂ is the limiting reactant because it gives the smaller amount of CO₂.
==============
Step 3. Calculate the <em>moles of C₃H₈ consumed</em>.
The molar ratio of C₃H₈:O₂ is 1:5.
Moles of C₃H₈ = 4.00 × ⅕
Moles of C₃H₈ = 0.800 mol C₃H₈
Answer:
Hi im an online tutor and I can help you with your assignments. we have experts in all fields. check out our website for assistance https://toplivewriters.com
Explanation:
Room temperature has the highest viscosity