No one is 100% sure when particles of matter originated however scientist believe it had to be some time before the Big Bang
Answer: the statements in 1 and 2 are true of IR spectroscopic region.
1. In general, the IR FUNDAMENTAL region has a longer wavelength region than the region we call the ultraviolet (uv) region.
2. We can sense some of the frequencies of the FUNDAMENTAL region of the IR as heat
Explanation:
IR has energy value between 10^-5eV - 10^-2eVwhile
UV has energy value of 4eV - 300eV
IR has low photon energy and cannot alter atoms and molecules while UV has sufficient energy to iodize atoms therefore UV has a higher energy band.
Infrared light falls just outside the visible spectrum, beyond the edge of what we can see as red.
Explanation:
Mass of fructose = 33.56 g
Mass of water = 18.88 g
Total mass of the solution = Mass of fructose + Mass of water = M
M = 33.56 g + 18.88 g =52.44 g
Volume of the solution = V = 40.00 mL
Density =
a) Density of the solution:

b) Molar mass of fructose = 180.16 g/mol
Moles of fructose = 
Molar mass of water = 18.02 g/mol
Moles of water= 
Mole fraction of fructose in this solution:


Mole fraction of water = 
c) Average molar mass of of the solution:
=

d) Mass of 1 mole of solution = 42.50 g/mol
Density of the solution = 1.311 g/mL
d) Specific molar volume of the solution:


Answer:
The biological significance is that it is the normal human body temperature and also the optimum temperature of the enzyme.
Explanation:
- Enzymes are biological catalysts that speed up the rate of chemical reactions.
- Enzymes catalyze specific reactions by working on a specific substrate to convert it into a product.
- The rate of enzyme activity depends on several factors which include pH, temperature, substrate concentration, and enzyme concentration among others.
- Enzymes work best at a specific pH and temperature known as optimum pH and optimum temperature respectively.
- In this case, enzyme amylase works best at a temperature of 37° C which is equivalent to the normal human body temperature.
Answer:
The answer is letter A. Diamond
Explanation:
The diamond is a crystalline form of carbon, with a cubic structure, of the sp³ type, that is, each carbon atom of the structure is linked to four other carbon atoms, forming a tetrahedral geometry.