Answer
The answer and procedures of the exercise are attached in the following archives.
Step-by-step explanation:
You will find the procedures, formulas or necessary explanations in the archive attached below. If you have any question ask and I will aclare your doubts kindly.
Answer:
t< 75 nm
Explanation:
A soap bubble is a thin film where when the beam enters the film it has a 180º phase change due to the refractive index and the wavelength changes between
λ = λ₀ / n
In the case of constructive interference in the curve of the spherical film it is
2 nt = (m + ½) λ₀
Where t is the thickness of the film and n the refractive index that does not indicate that we use that of water n = 1.33, m is an integer. The thickness of the film for the first interference (m = 0) is
t = λ₀ / 4 n
A thickness less than this gives destructive interference.
Let's look for the thickness for the visible spectrum
Violet light λ₀ = 400 nm = 400 10⁻⁹ m
t₁ = 400 10⁻⁹ / 4 1.33
t₁ = 75.2 10-9 m
Red light λ₀ = 700 nm = 700 10⁻⁹ m
t₂ = 700 10⁻⁹ / 4 1.33
t₂ = 131.6 10⁻⁹ m
Therefore, for all wavelengths to have destructive interference, the thickness must be less than 75 10⁻⁹ m = 75 nm
b) a film like eta is very thin, it is achieved when gravity thins the pomp, but any movement or burst of air breaks it,
Answer:
21.85 C
Explanation:
mass of iron = 1.5 kg, initial temperature of iron, T1 = 500 C
mass of water = 20 kg, initial temperature of water, T2 = 18 C
let T be the equilibrium temperature.
Specific heat of iron = 449 J/kg C
specific heat of water = 4186 J/kg C
Use the principle of caloriemetry
heat lost by the hot body = heat gained by the cold body
mass of iron x specific heat of iron x decrease in temperature = mass of water x specific heat of water x increase in temperature
1.5 x 449 x (500 - T) = 20 x 4186 x (T - 18)
336750 - 673.5 T = 83720 T - 1506960
1843710 = 84393.5 T
T = 21.85 C
If the Earth's core cools down, then one of the first things that would happen is that plate tectonic activity would slow down. Over time, the Earth would then dry up into this ball of dry soil because the heat of the Earth's core drives water up to the surface. Since the crust would be void of majority of liquid, it would shrink by an unknown amount.