Answer:
V (initial vertical velocity) = 45.4 sin 31.2 = 23.52 m/s
1/2 m V^2 = m g h conservation of energy
h = V^2 / (2 g) = 23.52^2 / 19.6 = 28.2 m max height
Check:
t = 28.2 / 9.8 = 2.88 sec time to reach max height
h = 23.52 * 2.88 - 1/2 g 2.88^2 = 27.1 m
<u>Answer </u>
A. that the initial gravitational potential energy of the masses transformed into kinetic energy of the paddles and then to thermal energy in the water
<u>Explanation</u>
James Joule allowed some water to fall from a height of 1 foot. the water would turn a paddle wheel at the bottom causing a temperature of water to raise.
The height form which the water fell, mass and the temperature of water was measured and used to calculate mechanical equivalent of heat.
From the choices given the best answer is A. that the initial gravitational potential energy of the masses transformed into kinetic energy of the paddles and then to thermal energy in the water.
Answer:
g'(10) = 
Explanation:
Since g is the inverse of f ,
We can write
g(f(x)) = x <em> </em><em>(Identity)</em>
Differentiating both sides of the equation we get,
g'(f(x)).f'(x) = 1
g'(10) =
--equation[1] Where f(x) = 10
Now, we have to find x when f(x) = 10
Thus 10 =
+ 2
= 8
x = 
Since f(x) =
+ 2
f'(x) = -
f'(
) = -4 × 4 = -16
Putting it in equation 1, we get:
We get g'(10) = -
Answer:
A package is dropped from a helicopter moving upward at 15 m/s. If it takes 16.0 s before the package strikes the ground, how high above the ground was the package when it was released? (Disregard air resistance.)
Show step by step please.
Note: The answer is given it's should be 1000 m ??
This what i can up with so see what it is kid
Explanation: