Answer:
Explanation:
turn over number = R max / [E]t = K2
From given , R max = 249 * 10 ^ -6 mol. L^-1
T [E]t = 2.23 n mol. L^-1
= 2.23 * 10^-9 mol. L^-1
Putting values in above equation,
= 111.65 * 10^3 S^-1
Turn over number is maximum no of substrate molecule that can be converted into product molecules for unit time by enzyme molecule.
This is a incomplete question. The complete question is:
It takes 348 kJ/mol to break a carbon-carbon single bond. Calculate the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon. Round your answer to correct number of significant digits
Answer: 344 nm
Explanation:
E= energy = 348kJ= 348000 J (1kJ=1000J)
N = avogadro's number = ![6.023\times 10^{23}](https://tex.z-dn.net/?f=6.023%5Ctimes%2010%5E%7B23%7D)
h = Planck's constant = ![6.626\times 10^{-34}Js ](https://tex.z-dn.net/?f=6.626%5Ctimes%2010%5E%7B-34%7DJs%0A)
c = speed of light = ![3\times 10^8ms^{-1}](https://tex.z-dn.net/?f=3%5Ctimes%2010%5E8ms%5E%7B-1%7D)
![1nm=10^{-9}m](https://tex.z-dn.net/?f=1nm%3D10%5E%7B-9%7Dm)
Thus the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon is 344 nm
Boyle's law states that pressure is inversely proportional to volume of gas at constant temperature
PV = k
where P - pressure , V - volume and k - constant
P1V1 = P2V2
where parameters for the first instance are on the left side and parameters for the second instance are on the right side of the equation
substituting these values in the equation
1.25 atm x 0.75 L = P x 1.1 L
P = 0.85 atm
final pressure is B) 0.85 atm
Answer:
After Eris was discovered, they had to decide whether Eris was a planet or not. If they decided it wasn't a planet, they had to also decide whether Pluto should be counted as a planet since Eris and Pluto were quite similar. They were the same size, and they were both part of the Kuiper Belt.
Explanation: