The smallest particle of the atom is called an Electron. Electrons are negatively charged and surround the protons and neutrons.
Answer:
Answer:
safe speed for the larger radius track u= √2 v
Explanation:
The sum of the forces on either side is the same, the only difference is the radius of curvature and speed.
Also given that r_1= smaller radius
r_2= larger radius curve
r_2= 2r_1..............i
let u be the speed of larger radius curve
now, \sum F = \frac{mv^2}{r_1} =\frac{mu^2}{r_2}∑F=
r
1
mv
2
=
r
2
mu
2
................ii
form i and ii we can write
v^2= \frac{1}{2} u^2v
2
=
2
1
u
2
⇒u= √2 v
therefore, safe speed for the larger radius track u= √2 v
Answer:
True
Explanation:
i searched it up and well this thing is making me do it up till 20 characters long so yea
1575 N
Explanation:
Step 1:
Let us consider that 350 J of energy is spent by that person to push a couch to 4.5 m from its initial position.
Let F be the force required and E be the energy spent and D be the distance traveled by the couch from its initial state.
In Physics, Work done = Force / Displaced distance
Step 2:
Let the work done be 350 J and Distance be 4.5 m
Then Force exerted = 
Answer: minimum theoretical value of T = 750k
Explanation:
Assuming the the cycle is reversible and is ideal then
Wnet/Qh = Nmin .... equa 1
Equation 1 can be rewritten as
(Th -TL)/ Th ...equation 2
Th= temp of hot reservoir
TL= temp of low reservoir= 300
Wnet = power generated=10kw
He = energy transfer=10kj per cycle
Qhe = power transfer = (100/60)*10Kj = 16.67kw
Sub into equat 1
Nmin = 10/16.67 = 0.6
Sub Nmin into equation 2
Th = -TL/(Nmin -1) = -300k/(0.6 - 1)
Th =750k