<h2>
Electric field at the location of the charge is 169.97 N/C</h2>
Explanation:
Electric field is the ratio of force and charge.
Force, F = 6 x 10⁻⁶ N
Charge, q = 3.53 x 10⁻⁸ C
We have

Electric field at the location of the charge is 169.97 N/C
Answer:
Explanation:
I'm not sure you can do this without just a bit more information. I can tell you what the mass of the water is when the rocks are removed. When we know that, we know the volume of the water that was displaced. whether or not this is enough information to determine the volume of the box, I'm not sure.
400 grams raises the box 1 cm.
The density of water = 1 gm / cm^3
400 grams of water = 400 mL or 400 cm^3
The volume of the displaced water = 400 cm^3
The volume a slice from the square prism is B*h
B = 400 cm^2
h = 1 cm
If the base is 400 cm^2 then each side is
s^2 = 400
sqrt(s^2)= sqrt(400)
s = 20
The volume of the box is 20^3 = 8000 cm^3
<span>B) 0.6 N
I suspect you have a minor error in your question. Claiming a coefficient of static friction of 0.30N is nonsensical. Putting the Newton there is incorrect. The figure of 0.25 for the coefficient of kinetic friction looks OK. So with that correction in mind, let's solve the problem.
The coefficient of static friction is the multiplier to apply to the normal force in order to start the object moving. And the coefficient of kinetic friction (which is usually smaller than the coefficient of static friction) is the multiplied to the normal force in order to keep the object moving. You've been given a normal force of 2N, so you need to multiply the coefficient of static friction by that in order to get the amount of force it takes to start the shoe moving. So:
0.30 * 2N = 0.6N
And if you look at your options, you'll see that option "B" matches exactly.</span>