1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Novosadov [1.4K]
3 years ago
10

How can x-rays make pictures of the inside of solid objects

Physics
1 answer:
Mariana [72]3 years ago
6 0
X-rays have high energy and can penetrate matter that light cannot.
You might be interested in
What does the person in back of the ambulance experience? A) a lower frequency of the siren B) a lower amplitude of the siren C)
hoa [83]

The answer to your question is "A. a lower frequency of the siren.

Because the person in back of the ambulance will hear a lower frequency of the siren. This is because the waves are stretched out. A longer wavelength results in a lower frequency.

5 0
3 years ago
Read 2 more answers
What is the maximum magnitude of charge that can be placed on each plate if the electric field in the region between the plates
34kurt

The given question is incomplete. The complete question is as follows.

A parallel-plate capacitor has capacitance C_{0} = 8.50 pF when there is air between the plates. The separation between the plates is 1.00 mm.

What is the maximum magnitude of charge that can be placed on each plate if the electric field in the region between the plates is not to exceed 3.00 \times 10^{4} V/m?

Explanation:

It is known that relation between electric field and the voltage is as follows.

             V = Ed

Now,  

              Q = CV

or,           Q = C \times Ed

Therefore, substitute the values into the above formula as follows.

              Q = C \times Ed

                  = 8.50 pF \times (\frac{10^{-12} F}{1 pF})(3 \times 10^{4} m/s)(1 mm)(\frac{10^{-3} m}{1 mm})

                  = 2.55 \times 10^{-10} C

Hence, we can conclude that the maximum magnitude of charge that can be placed on each given plate is 2.55 \times 10^{-10} C.

3 0
3 years ago
Which statement best describes the relationship between atoms and nuclear forces? (2 points)
Setler79 [48]

Answer:

D. Strong nuclear forces hold the nucleus of an atom together. Weak nuclear forces are involved when certain types of atoms break down.

Explanation:

4 0
2 years ago
A child whirls a ball in a vertical circle. Assuming the speed of the ball is constant (an approximation), when would the tensio
BARSIC [14]

Answer:

C. At the bottom of the circle.

Explanation:

Lets take

Radius of the circle = r

Mass = m

Tension = T

Angular speed = ω

The radial acceleration towards = a

a= ω² r

Weight due to gravity = mg

<h3>At the bottom condition</h3>

T - m g = m a

T =  m ω² r  + m g

<h3>At the top condition</h3>

T + m g = m a

T=  m ω² r -m g

From above equation we can say that tension is grater when ball at bottom of the vertical circle.

Therefore the answer is C.

C. At the bottom of the circle.

8 0
3 years ago
A bobsledder pushes her sled across horizontal snow to get it going, then jumps in. After she jumps in, the sled gradually slows
anastassius [24]

Answer:

In the vertical direction the acting forces are the normal force and the weight of the bobsleder plus the sled. In the horizontal direction the acting force is the friciton force.

Explanation:

Hi there!

Please, see the attached figure for a graphic representation of the forces acting on the sled after the bobsleder jumped in.

In the vertical direction, the acting forces are the normal force (N) and the weight of the sled plus the bobsledder (W).

Since the sled is not being accelerated in the vertical direction, the sum of forces in that direction is zero:

∑Fy = W + N = 0 ⇒ W = N

The weight is calculated as follows:

W = (mb + ms) · g

Where:

mb = mass of the bobsleder.

ms = mass of the sled.

g = acceleration due to gravity.

In the horizontal direction the only acting force is the friction force (Fr). The friction force is calculated a follows:

Fr = N · μ

Where:

N = normal force.

μ = kinetic friction coefficient.

Since N = W = (mb + ms) · g

Fr = (mb + ms) · g · μ

If we want to find the acceleration of the sled after the bobsleder jumps in, we can apply Newton's second law:

∑F = m · a

Where "a" is the acceleration and "m" is the mass of the object (in this case, the mass of bobsleder plus the mass of the sled).

∑F = Fr =  (mb + ms) · g · μ =  (mb + ms) · a

(mb + ms) · g · μ =  (mb + ms) · a

Solving for "a":

g · μ = a

3 0
3 years ago
Other questions:
  • Identify the following physical quantities as scalars or vectors.
    5·2 answers
  • Two vectors, in three dimensions, are given in Cartesian coordinates as :
    8·1 answer
  • A roller coaster starts from rest at the top ofan 18m hill.
    5·1 answer
  • (a) What is the sum of the following four vectors in unit-vector notation? For that sum, what are (b) the magnitude, (c) the ang
    14·1 answer
  • An electrical power plant manages to transfer 88 percent of the heat produced in the burning of fossil fuel to convert water to
    11·1 answer
  • A car goes from 0 to 26.8 m/s in 6.2 s. What is the average acceleration of the car?
    14·1 answer
  • How many components do vectors have, and what are they?
    8·1 answer
  • Rgfffffffffffffffffffffffffffffffffffffffffffffffffffffff
    7·1 answer
  • The plane of a5cm*8cm rectangular loop of wire is parallel to a 0.19T magnetic field the loop carries a current of 6.2 A. What t
    8·1 answer
  • An archer fires an arrow at an angle of 9° above the horizontal with a resultant velocity of 24 m/s
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!