Answer:
The angular frequency of the block is ω = 5.64 rad/s
Explanation:
The speed of the block v = rω where r = amplitude of the oscillation and ω = angular frequency of the oscillation.
Now ω = v/r since v = speed of the block = 62 cm/s and r = the amplitude of the oscillation = 11 cm.
The angular frequency of the oscillation ω is
ω = v/r
ω = 62 cm/s ÷ 11 cm
ω = 5.64 rad/s
So, the angular frequency of the block is ω = 5.64 rad/s
The equation for percent error is
% Error =

Our experimental is 2.85g/cm^3 and the accepted is 2.7g/cm^3
Thus our % Error = 5.555%
Answer:
E=-1.51 eV.

Explanation:
The nth level energy of a hydrogen atom is defined by the formula,

Given in the question, the hydrogen atom is in the 3p state.
Then energy of n=3 state is,

Therefore, energy of the hydrogen atom in the 3p state is -1.51 eV.
Now, the value of L can be calculated as,

For 3p state, l=1

Therefore, the value of L of a hydrogen atom in 3p state is
.
Answer:
No one is right
Explanation:
John Case:
The function
is defined between -1 and 1, So it is not possible obtain a value
greater.
In addition, if you move the function cosine a T Value, and T is the Period, the function take the same value due to the cosine is a periodic function.
Larry case:
Is you have
, the domain of this is [0,2].
it is equivalent to adding 1 to the domain of the
, and its mean that the function
, in general, is not greater than
.
B. is it i just got done this in class like two weeks ago hope it helps