Answer:
Average acceleration on first part of the chunk is given as

Average acceleration on second part of the chunk is given as

Explanation:
By momentum conservation along x direction we will have

so we have


also by energy conservation






by solving above equation we will have


Average acceleration on first part of the chunk is given as


Average acceleration on second part of the chunk is given as


I am thinking that maybe the problem is not with the calibration. It might be that the buffered solution is already expired since at this point the solution is already not stable and will give a different pH reading than what is expected.
Answer:
The electric flux is 
Explanation:
Given:
- Radius of the disc R=0.50 m
- Angle made by disk with the horizontal

- Magnitude of the electric Field

The flux of the Electric Field E due to the are dA in space can be found out by using Gauss Law which is as follows

where
is the total Electric Flux- E is the Electric Field
- dA is the Area through which the electric flux is to be calculated.
Now according to question we have

Hence the electric flux is calculated.
Answer:
c. You would weigh less on planet A because the distance between
you and the planet's center of gravity would be smaller.
Explanation:
The statement that best describes your weight on each planet is that you would weigh less on planet A because the distance between you and the planet's center of gravity would be smaller.
- This is based on Newton's law of universal gravitation which states that "the force of gravity between two bodies is directly proportional to the product of their masses and inversely proportional to the square of the distances between them".
Since weight is dependent on the force of gravity and mass, the planet with more gravitational pull will have masses on them weighing more.
- Since the distance between the person and the center of the planet is smaller, therefore, the weight will be lesser.
Answer:
the answer is a time your welcome