Answer:
Longitudinal waves are waves in which the displacement of the medium is in the same direction as, or the opposite direction to, the direction of propagation of the wave. ... In longitudinal waves, the displacement of the medium is parallel to the propagation of the waves.
Answer:
a) increases
Explanation:
The increase in temperature causes the particles to move much faster. This in turn effects the collision rate of the particle which causes the chemical reaction. Thus the rate of chemical reaction increases.
So, we conclude that the rate of a chemical reaction is directly related to temperature. With increase in temperature there is an increase in the reaction rate and vice versa.
2: It's not just the capillary action, but the pull from transpiration (the evaporation of water from the tree) that is used to pull water up from the roots.
<span>The second question needs context. Strong bonds alone won't cause tension. I don't see how adhesion is different. High vapour pressure could do it, but it's the difference in pressures that'd cause tension (and the resistance of that pressure by the surface). So, a low and high pressure would be needed. Poorly worded question :( </span>
<span>1: "Adhesion is the tendency of certain dissimilar molecules to cling together due to attractive forces." [1] </span>
<span>3: The other three answere would not work. Think of a boat. </span>
<span>3: If you push gas, it will be compressed(get smaller). If you push liquid it will push something else. Thus, liquids are good for transferring force. This is a hydraulic system.</span>
Answer:
W= 4.4 J
Explanation
Elastic potential energy theory
If we have a spring of constant K to which a force F that produces a Δx deformation is applied, we apply Hooke's law:
F=K*x Formula (1): The force F applied to the spring is proportional to the deformation x of the spring.
As the force is variable to calculate the work we define an average force
Formula (2)
Ff: final force
Fi: initial force
The work done on the spring is :
W = Fa*Δx
Fa : average force
Δx : displacement
:Formula (3)
: final deformation
:initial deformation
Problem development
We calculate Ff and Fi , applying formula (1) :


We calculate average force applying formula (2):

We calculate the work done on the spring applying formula (3) : :
W= 11N*(0.7m-0.3m) = 11N*0.4m=4.4 N*m = 4.4 Joule = 4.4 J
Work done in stages
Work is the change of elastic potential energy (ΔEp)
W=ΔEp
ΔEp= Epf-Epi
Epf= final potential energy
Epi=initial potential energy




W=ΔEp= 5.39 J-0.99 J = 4.4J
: