The oldest way ... the way we've been using as long as we've been
walking on the Earth ... has been to use plants. Plants sit out in the
sun all day, capturing its energy and using it to make chemical compounds.
Then we come along, cut the plants down, and eat them. Our bodies
rip the chemical compounds apart and suck the solar energy out of them,
and then we use the energy to walk around, sing, and play video games.
Another way to capture the sun's energy is to build a dam across a creek
or a river, so that the water can't flow past it. You see, it was the sun's
energy that evaporated the water from the ocean and lifted it high into
the sky, giving it a lot of potential energy. The rain falls on high ground,
up in the mountains, so the water still has most of that potential energy
as it drizzles down the river to the ocean. If we catch it on its way, we
can use some of that potential energy to turn wheels, grind our grain,
turn our hydroelectric turbines to get electrical energy ... all kinds of jobs.
A modern, recent new way to capture some of the sun's energy is to use
photovoltaic cells. Those are the flat blue things that you see on roofs
everywhere. When the sun shines on them, they convert some of its
energy into electrical energy. We use some of what they produce, and
we store the rest in giant batteries, to use when the sun is not there.
The correct answer to the question is : D) Be moving at a constant velocity.
EXPLANATION:
As per Newton's first laws of motion, every body continues to be at state of rest or of uniform motion in a straight line unless and until it is compelled by some external unbalanced forces acting on it.
Hence, it is the unbalanced force which changes the state of rest or motion of a body. Balanced force is responsible for keeping the body to be either in static equilibrium or in dynamic equilibrium.
As per the options given in the question, the last one is true for an object under balanced forces.
From that list, only the frequency makes the difference.
Einstein won his only Nobel Prize for his explanation of this effect.
Answer:
The index of refraction of the glass is 1.3
Explanation:
Given data:
i = incident angle = 50°
r = refracted angle = 36.1°
The index of refraction according Snell´s law is:

<span>Speed is the distance traveled divided by the time it took to travel this distance. Velocity is the change in position divided by the time of travel. Velocity only depends on the starting and ending point but the speed depends on the path. Speed is a scalar quantity (the distance per time ratio) and velocity is a vector quantuty, because it is defined also with its direction.</span>