1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
viktelen [127]
3 years ago
13

Two balanced Y-connected loads in parallel, one drawing 15kW at 0.6 power factor lagging and the other drawing 10kVA at 0.8 powe

r factor leading, are supplied by a balanced, three-phase, 480-volt source. (a) Draw the power triangle for each load and for the combined load. (b) Determine the power factor of the combined load and state whether lagging or leading. (c) Determine the magnitude of the line current from the source. (d) Δ-connected capacitors are now installed in parallel with the combined load. What value of capacitive reactance is needed in each leg of the A to make the source power factor unity? Give your answer in Ω. (e) Compute the magnitude of the current in each capacitor and the line current from the source.

Engineering
1 answer:
NemiM [27]3 years ago
8 0

Answer:

(a) attached below

(b) pf_{C}=0.85 lagging

(c) I_{C} =32.37 A

(d) X_{C} =49.37 Ω

(e) I_{cap} =9.72 A and I_{line} =27.66 A

Explanation:

Given data:

P_{1}=15 kW

S_{2} =10 kVA

pf_{1} =0.6 lagging

pf_{2}=0.8 leading

V=480 Volts

(a) Draw the power triangle for each load and for the combined load.

\alpha_{1}=cos^{-1} (0.6)=53.13°

\alpha_{2}=cos^{-1} (0.8)=36.86°

S_{1}=P_{1} /pf_{1} =15/0.6=25 kVA

Q_{1}=P_{1} tan(\alpha_{1} )=15*tan(53.13)=19.99 ≅ 20kVAR

P_{2} =S_{2}*pf_{2} =10*0.8=8 kW

Q_{2} =P_{2} tan(\alpha_{2} )=8*tan(-36.86)=-5.99 ≅ -6 kVAR

The negative sign means that the load 2 is providing reactive power rather than consuming  

Then the combined load will be

P_{c} =P_{1} +P_{2} =15+8=23 kW

Q_{c} =Q_{1} +Q_{2} =20-6=14 kVAR

(b) Determine the power factor of the combined load and state whether lagging or leading.

S_{c} =P_{c} +jQ_{c} =23+14j

or in the polar form

S_{c} =26.92°

pf_{C}=cos(31.32) =0.85 lagging

The relationship between Apparent power S and Current I is

S=VI^{*}

Since there is conjugate of current I therefore, the angle will become negative and hence power factor will be lagging.

(c) Determine the magnitude of the line current from the source.

Current of the combined load can be found by

I_{C} =S_{C}/\sqrt{3}*V

I_{C} =26.92*10^3/\sqrt{3}*480=32.37 A

(d) Δ-connected capacitors are now installed in parallel with the combined load. What value of capacitive reactance is needed in each leg of the A to make the source power factor unity?Give your answer in Ω

Q_{C} =3*V^2/X_{C}

X_{C} =3*V^2/Q_{C}

X_{C} =3*(480)^2/14*10^3 Ω

(e) Compute the magnitude of the current in each capacitor and the line current from the source.

Current flowing in the capacitor is  

I_{cap} =V/X_{C} =480/49.37=9.72 A

Line current flowing from the source is

I_{line} =P_{C} /3*V=23*10^3/3*480=27.66 A

You might be interested in
An air conditioning system is to be filled from a rigid container that initially contains 5 kg of saturated liquid at 24° Celsiu
gtnhenbr [62]
And air-conditioning system is to be filled for my ridge the containerBut that internally contains 5 kgDetermine the final quality of the arm 134
7 0
3 years ago
For a steel alloy it has been determined that a carburizing heat treatment of 11.3 h duration will raise the carbon concentratio
diamong [38]

This question is incomplete, the complete question is;

For a steel alloy it has been determined that a carburizing heat treatment of 11.3 h duration at Temperature T1 will raise the carbon concentration to 0.44 wt% at a point 1.8 mm from the surface. A separate experiment is performed at T2 that doubles the diffusion coefficient for carbon in steel.

Estimate the time necessary to achieve the same concentration at a 4.9 mm position for an identical steel and at the same carburizing temperature T2.

Answer:

the required time to achieve the same concentration at a 4.9 is 83.733 hrs

Explanation:

Given the data in the question;

treatment time t₁ = 11.3 hours

Carbon concentration = 0.444 wt%

thickness at surface x₁ = 1.8 mm = 0.0018 m

thickness at identical steel x₂ = 4.9 mm = 0.0049 m

Now, Using Fick's second law inform of diffusion

x^2 / Dt = constant

where D is constant

then

x^2 / t = constant

x^2_1 / t₁ = x^2_2 / t₂

x^2_1 t₂ = t₁x^2_2

t₂ = t₁x^2_2 / x^2_1

t₂ = (x^2_2 / x^2_1)t₁

t₂ = ( x_2 / x_1 )^2 × t₁

so we substitute

t₂ = ( 0.0049  / 0.0018  )^2 × 11.3 hrs

t₂ = 7.41 × 11.3 hrs

t₂ = 83.733 hrs

Therefore, the required time to achieve the same concentration at a 4.9 is 83.733 hrs

8 0
3 years ago
2. When it comes to selling their crop, what are 3 options a farmer has when harvesting their grain?
tiny-mole [99]

Answer:

Sell his crop, use his crop as food, and sell his crop

Explanation:

6 0
3 years ago
Refrigerant-134a at 400 psia has a specific volume of 0.1144 ft3/lbm. Determine the temperature of the refrigerant based on (a)
vekshin1

Answer:

a) Using Ideal gas Equation, T = 434.98°R = 435°R

b) Using Van Der Waal's Equation, T = 637.32°R = 637°R

c) T obtained from the refrigerant tables at P = 400 psia and v = 0.1144 ft³/lbm is T = 559.67°R = 560°R

Explanation:

a) Ideal gas Equation

PV = mRT

T = PV/mR

P = pressure = 400 psia

V/m = specific volume = 0.1144 ft³/lbm

R = gas constant = 0.1052 psia.ft³/lbm.°R

T = 400 × 0.1144/0.1052 = 434.98 °R

b) Van Der Waal's Equation

T = (1/R) (P + (a/v²)) (v - b)

a = Van Der Waal's constant = (27R²(T꜀ᵣ)²)/(64P꜀ᵣ)

R = 0.1052 psia.ft³/lbm.°R

T꜀ᵣ = critical temperature for refrigerant-134a (from the refrigerant tables) = 673.6°R

P꜀ᵣ = critical pressure for refrigerant-134a (from the refrigerant tables) = 588.7 psia

a = (27 × 0.1052² × 673.6²)/(64 × 588.7)

a = 3.596 ft⁶.psia/lbm²

b = (RT꜀ᵣ)/8P꜀ᵣ

b = (0.1052 × 673.6)/(8 × 588.7) = 0.01504 ft³/lbm

T = (1/0.1052) (400 + (3.596/0.1144²) (0.1144 - 0.01504) = 637.32°R

c) The temperature for the refrigerant-134a as obtained from the refrigerant tables at P = 400 psia and v = 0.1144 ft³/lbm is

T = 100°F = 559.67°R

7 0
3 years ago
The cube measures 3.0-ft on all sides and has a density of 3.1 slugs/ft3. How much does it weigh?
kodGreya [7K]

Answer:

W = 2695.14 lb

Explanation:

given,

side of cube = 3 ft

density of the cube = 3.1 slugs/ft³

we know,

density = \dfrac{mass}{volume}

mass = density x volume

volume = 3³ = 27 ft³

mass =  3.1  x 27

    m = 83.7 slugs.

weight calculation

converting mass from slug to pound

weight of 1 slug is equal to 32.2 lb

now,

weight of the cube is equal to

  W = 83.7 slugs x 32.2 lb/slug

  W = 2695.14 lb

hence, weight is equal to W = 2695.14 lb

4 0
3 years ago
Other questions:
  • A circuit-switching scenario in whichNcs users, each requiring a bandwidth of 25 Mbps, must share a link of capacity 150 Mbps.
    12·1 answer
  • What are the challenges posed by strategic information systems, and how should they be addressed?
    10·1 answer
  • A piston–cylinder assembly contains air, initially at 2 bar, 300 K, and a volume of 2 m3. The air undergoes a process to a state
    12·1 answer
  • Please answwr the above question screenshot.​
    15·1 answer
  • In a wire, when elongation is 4 cm energy stored is E. if it is stretched by 4 cm, then what amount of elastic potential energy
    15·2 answers
  • Describe the make-up of an internal combustion engine.<br> Pls answer quickly.
    5·1 answer
  • If my current directory is ‘AR’ write the path for my current directory
    5·1 answer
  • 9
    15·1 answer
  • In a long trip what is considered a life line to take with you.
    12·1 answer
  • Steam locomotives with a 4-6-2 wheel arrangement were usually classified as what?.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!