1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
viktelen [127]
3 years ago
13

Two balanced Y-connected loads in parallel, one drawing 15kW at 0.6 power factor lagging and the other drawing 10kVA at 0.8 powe

r factor leading, are supplied by a balanced, three-phase, 480-volt source. (a) Draw the power triangle for each load and for the combined load. (b) Determine the power factor of the combined load and state whether lagging or leading. (c) Determine the magnitude of the line current from the source. (d) Δ-connected capacitors are now installed in parallel with the combined load. What value of capacitive reactance is needed in each leg of the A to make the source power factor unity? Give your answer in Ω. (e) Compute the magnitude of the current in each capacitor and the line current from the source.

Engineering
1 answer:
NemiM [27]3 years ago
8 0

Answer:

(a) attached below

(b) pf_{C}=0.85 lagging

(c) I_{C} =32.37 A

(d) X_{C} =49.37 Ω

(e) I_{cap} =9.72 A and I_{line} =27.66 A

Explanation:

Given data:

P_{1}=15 kW

S_{2} =10 kVA

pf_{1} =0.6 lagging

pf_{2}=0.8 leading

V=480 Volts

(a) Draw the power triangle for each load and for the combined load.

\alpha_{1}=cos^{-1} (0.6)=53.13°

\alpha_{2}=cos^{-1} (0.8)=36.86°

S_{1}=P_{1} /pf_{1} =15/0.6=25 kVA

Q_{1}=P_{1} tan(\alpha_{1} )=15*tan(53.13)=19.99 ≅ 20kVAR

P_{2} =S_{2}*pf_{2} =10*0.8=8 kW

Q_{2} =P_{2} tan(\alpha_{2} )=8*tan(-36.86)=-5.99 ≅ -6 kVAR

The negative sign means that the load 2 is providing reactive power rather than consuming  

Then the combined load will be

P_{c} =P_{1} +P_{2} =15+8=23 kW

Q_{c} =Q_{1} +Q_{2} =20-6=14 kVAR

(b) Determine the power factor of the combined load and state whether lagging or leading.

S_{c} =P_{c} +jQ_{c} =23+14j

or in the polar form

S_{c} =26.92°

pf_{C}=cos(31.32) =0.85 lagging

The relationship between Apparent power S and Current I is

S=VI^{*}

Since there is conjugate of current I therefore, the angle will become negative and hence power factor will be lagging.

(c) Determine the magnitude of the line current from the source.

Current of the combined load can be found by

I_{C} =S_{C}/\sqrt{3}*V

I_{C} =26.92*10^3/\sqrt{3}*480=32.37 A

(d) Δ-connected capacitors are now installed in parallel with the combined load. What value of capacitive reactance is needed in each leg of the A to make the source power factor unity?Give your answer in Ω

Q_{C} =3*V^2/X_{C}

X_{C} =3*V^2/Q_{C}

X_{C} =3*(480)^2/14*10^3 Ω

(e) Compute the magnitude of the current in each capacitor and the line current from the source.

Current flowing in the capacitor is  

I_{cap} =V/X_{C} =480/49.37=9.72 A

Line current flowing from the source is

I_{line} =P_{C} /3*V=23*10^3/3*480=27.66 A

You might be interested in
A piston/cylinder contains 1.5 kg of water at 200 kPa, 150°C. It is now heated by a process in which pressure is linearly relate
Fofino [41]

Answer:

final volume V2 = 0.71136 m³

work done in process W = -291.24 kJ

heat transfer Q = 164 kJ

Explanation:

given data

mass = 1.5 kg

pressure p1 = 200 kPa

temperature t1 = 150°C

final pressure p2 = 600 kPa

final temperature t2 = 350°C

solution

we will use here superheated water table that is

for pressure 200 kPa and 150°C temperature

v1 = 0.95964 m³/kg

u1 = 2576.87 kJ/kg

and

for pressure 600 kPa and 350°C temperature

v2 = 0.47424 m³/kg

u2 = 2881.12 kJ/kg

so v1 is express as

V1 = v1 × m    ............................1

V1 = 0.95964 × 1.5

V1 = 1.43946 m³

and

V2 = v2 × m    ............................2

V2 = 0.47424 × 1.5

final volume V2 = 0.71136 m³

and

W = P(avg) × dV      .............................3

P(avg) = \frac{p1+p2}{2}    = \frac{200+600}{2} = 400 × 10³

put here value

W = 400 × 10³ × (0.71136 - 1.43946 )

work done in process W = -291.24 kJ

and

heat transfer is

Q = m × (u2 - u1)  + W       .............................4

Q = 1.5 × (2881.12 - 2576.87)  + 292.24

heat transfer Q = 164 kJ

7 0
3 years ago
Only an outer panel is being replaced. Technician A says that removing the spot welds by drilling through both panels allows the
Angelina_Jolie [31]

Answer:

6e66363636633747747363637737373737337374

5 0
3 years ago
Consider a single crystal of nickel oriented such that a tensile stress is applied along a [001] direction. If slip occurs on a
Elena L [17]

Answer:

\mathbf{\tau_c =5.675 \ MPa}

Explanation:

Given that:

The direction of the applied tensile stress =[001]

direction of the slip plane = [\bar 101]

normal to the slip plane = [111]

Now, the first thing to do is to calculate the angle between the tensile stress and the slip by using the formula:

cos \lambda = \Big [\dfrac{d_1d_2+e_1e_2+f_1f_2}{\sqrt{(d_1^2+e_1^2+f_1^2)+(d_2^2+e_2^2+f_2^2) }} \Big]

where;

[d_1\ e_1 \ f_1] = directional indices for tensile stress

[d_2 \ e_2 \ f_2] = slip direction

replacing their values;

i.e d_1 = 0 ,e_1 = 0 f_1 =  1 & d_2 = -1 , e_2 = 0 , f_2 = 1

cos \lambda = \Big [\dfrac{(0\times -1)+(0\times 0) + (1\times 1) }{\sqrt{(0^2+0^2+1^2)+((-1)^2+0^2+1^2) }} \Big]

cos \ \lambda = \dfrac{1}{\sqrt{2}}

Also, to find the angle \phi between the stress [001] & normal slip plane [111]

Then;

cos \  \phi = \Big [\dfrac{d_1d_3+e_1e_3+f_1f_3}{\sqrt{(d_1^2+e_1^2+f_1^2)+(d_3^2+e_3^2+f_3^2) }} \Big]

replacing their values;

i.e d_1 = 0 ,e_1 = 0 f_1 =  1 & d_3 = 1 , e_3 = 1 , f_3 = 1

cos \  \phi= \Big [ \dfrac{ (0 \times 1)+(0 \times 1)+(1 \times 1)} {\sqrt {(0^2+0^2+1^2)+(1^2+1^2 +1^2)} } \Big]

cos \phi= \dfrac{1} {\sqrt{3} }

However, the critical resolved SS(shear stress) \mathbf{\tau_c} can be computed using the formula:

\tau_c = (\sigma )(cos  \phi )(cos \lambda)

where;

applied tensile stress \sigma = 13.9 MPa

∴

\tau_c =13.9\times (  \dfrac{1}{\sqrt{2}} )( \dfrac{1}{\sqrt{3}})

\mathbf{\tau_c =5.675 \ MPa}

3 0
3 years ago
An AX ceramic compound has the rock salt crystal structure. If the radii of the A and X ions are 0.137 and 0.241 nm, respectivel
Tju [1.3M]

Answer:

c) 1.75 g/cm³

Explanation:

Given that

Radii of the A ion, r(c) = 0.137 nm

Radii of the X ion, r(a) = 0.241 nm

Atomic weight of the A ion, A(c) = 22.7 g/mol

Atomic weight of the X ion, A(a) = 91.4 g/mol

Avogadro's number, N = 6.02*10^23 per mol

Solution is attached below

3 0
3 years ago
This manometer is used to measure the difference in water level between the two tanks.
SpyIntel [72]

Answer:

a) True

Explanation:

hope it helps u

3 0
3 years ago
Other questions:
  • During the collision, is the magnitude of the force of asteroid A on asteroid B greater than, less than, or equal to the magnitu
    11·2 answers
  • Technician A says that reversing the direction of refrigerant (as with a heat pump system) could be done to provide cabin heat.
    14·1 answer
  • The average human heart Beats 1.15 times 10 to the power of 5 per day. There are 3.65 times 10 to the power of 2 days in one yea
    14·1 answer
  • what is the expected life 1 inch diameter bar machined from AISI 1020 CD Steel is subjected to alternating bending stress betwee
    9·1 answer
  • Joe, a technician, is attempting to connect two hubs to add a new segment to his local network. He uses one of his CAT5 patch ca
    9·1 answer
  • The current at resonance in a series L-C-R circuit is 0.2mA. If the applied voltage is 250mV at a frequency of 100 kHz and the c
    9·1 answer
  • Write a Nested While Loop that will increment the '*' from 1 to 10.
    6·1 answer
  • A coil consists of 200 turns of copper wire and have a cross-sectional area of 0.8 mmm square.The mean length per turn is 80 cm
    13·1 answer
  • 3. Determine the most unfavorable arrangement of the crane loads and
    6·1 answer
  • The most important reason to wear your seat belt is to protect you from:
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!