Answer:
percentage change in volume = 0.00285 %
Explanation:
given data
bulk modulus = 3.5 ×
N/m²
bulk stress =
N/m²
solution
we will apply here bulk modulus formula that is
bulk modulus =
...............1
put here value and we get
3.5 ×
=
solve it we get
bulk strain = 2.8571 ×
and
bulk strain =
so that percentage change in volume is = 2.8571 ×
× 100
percentage change in volume = 0.00285 %
Answer:
Complete question is:
write the following decorators and apply them to a single function (applying multiple decorators to a single function):
1. The first decorator is called strong and has an inner function called wrapper. The purpose of this decorator is to add the html tags of <strong> and </strong> to the argument of the decorator. The return value of the wrapper should look like: return “<strong>” + func() + “</strong>”
2. The decorator will return the wrapper per usual.
3. The second decorator is called emphasis and has an inner function called wrapper. The purpose of this decorator is to add the html tags of <em> and </em> to the argument of the decorator similar to step 1. The return value of the wrapper should look like: return “<em>” + func() + “</em>.
4. Use the greetings() function in problem 1 as the decorated function that simply prints “Hello”.
5. Apply both decorators (by @ operator to greetings()).
6. Invoke the greetings() function and capture the result.
Code :
def strong_decorator(func):
def func_wrapper(name):
return "<strong>{0}</strong>".format(func(name))
return func_wrapper
def em_decorator(func):
def func_wrapper(name):
return "<em>{0}</em>".format(func(name))
return func_wrapper
@strong_decorator
@em_decorator
def Greetings(name):
return "{0}".format(name)
print(Greetings("Hello"))
Explanation:
Answer:
1. 
2. 
Explanation:
1.
Given:
- height of the window pane,

- width of the window pane,

- thickness of the pane,

- thermal conductivity of the glass pane,

- temperature of the inner surface,

- temperature of the outer surface,

<u>According to the Fourier's law the rate of heat transfer is given as:</u>

here:
A = area through which the heat transfer occurs = 
dT = temperature difference across the thickness of the surface = 
dx = t = thickness normal to the surface = 


2.
- air spacing between two glass panes,

- area of each glass pane,

- thermal conductivity of air,

- temperature difference between the surfaces,

<u>Assuming layered transfer of heat through the air and the air between the glasses is always still:</u>



Answer:
Divide the difference in tax by the amount of income from the investment, and you'll get the economic marginal tax rate from investing. Most people refer to marginal tax rates as being identical to tax brackets.
hope this helps
have a good day :)
Explanation: