Answer:
Glycogen is the primary energy source for muscle and liver cells.
Explanation:
Glycogen is a readily mobilized storage form of glucose. It is a very large, branched polymer of glucose residues that can be broken down to yield glucose molecules when energy is needed. Most of the glucose residues in glycogen are linked by α-1,4-glycosidic bonds. Branches at about every tenth residue are created by α-1,6-glycosidic bonds.
Glycogen is not as reduced as fatty acids are and consequently not as energy rich. Why do animals store any energy as glycogen? Why not convert all excess fuel into fatty acids? Glycogen is an important fuel reserve for several reasons. The controlled breakdown of glycogen and release of glucose increase the amount of glucose that is available between meals. Hence, glycogen serves as a buffer to maintain blood-glucose levels. Glycogen's role in maintaining blood-glucose levels is especially important because glucose is virtually the only fuel used by the brain, except during prolonged starvation. Moreover, the glucose from glycogen is readily mobilized and is therefore a good source of energy for sudden, strenuous activity. Unlike fatty acids, the released glucose can provide energy in the absence of oxygen and can thus supply energy for anaerobic activity.
Answer:
a. 9947 m
b. 99476 times
c. 2*10^11 molecules
Explanation:
a) To find the mean free path of the air molecules you use the following formula:

R: ideal gas constant = 8.3144 Pam^3/mol K
P: pressure = 1.5*10^{-6} Pa
T: temperature = 300K
N_A: Avogadros' constant = 2.022*10^{23}molecules/mol
d: diameter of the particle = 0.25nm=0.25*10^-9m
By replacing all these values you obtain:

b) If we assume that the molecule, at the average, is at the center of the chamber, the times the molecule will collide is:

c) By using the equation of the ideal gases you obtain:

Answer:
I. Tension (cable A) ≈ 6939 lbf
II. Tension (cable B) ≈ 17199 lbf
Explanation:
Let's begin by listing out the data that we were given:
mass of beam (m) = 570 lb, deceleration (cable A) = -20 ft/s², deceleration (cable B) = -2 ft/s²,
g = 32.17405 ft/s²
The tension on an object is given by the product of mass of the object by gravitational force plus/minus the product of mass by acceleration.
Mathematically represented thus:
T = mg + ma
where:
T = tension, m = mass, g = gravitational force,
a = acceleration
I. For Cable A, we have:
T = mg + ma = (570 * 32.17405) + [570 * (-20)]
T = 18339.2085 - 11400 = 6939.2085
T ≈ 6939 lbf
II. For Cable B, we have:
T = mg + ma = (570 * 32.17405) + [570 * (-2)]
T = 18339.2085 - 1140 = 17199.2085
T ≈ 17199 lbf
Answer:
c) site preparation
Explanation:
A construction process can be defined as a series of important physical events (processes) that must be accomplished during the execution of a construction project.
Generally, in the construction of any physical asset such as offices, hospitals, schools, stadiums etc, the first step of the construction process is site preparation. Site preparation refers to processes such as clearing, blasting, levelling, landfilling, surveying, cutting, excavating and demolition of all unwanted objects on a piece of land, so as to make it ready for use.
This ultimately implies that, site preparation should be the first task to be accomplished in the construction process.
Hence, the construction process typically begins with site preparation before other activities such as the laying of foundation can be done.
Additionally, construction costs can be defined as the overall costs associated with the development of a built asset, project or property. The construction costs is classified into two (2) main categories and these are; capital and operational costs.
Unless cylinders are firmly secured on a special carrier intended for this purpose, regulators shall be removed and valve protection caps put in place before cylinders are moved. A suitable cylinder truck, chain, or other steadying device shall be used to keep cylinders from being knocked over while in use.