Answer:
Specififc rotation [∝] = 0.5° mL/g.dm
Explanation:
Given that:
mass = 400 mg
volume = 10 mL
For a solution,
The Concentration = mass/volume
Concentration = 400/10
Concentration = 40 g/mL
The path length l = 20 cm = 2 dm
Observed rotation [∝] = + 40°
Specififc rotation [∝] = ∝/l × c
where;
l = path length
c = concentration
Specififc rotation [∝] = (40 / 2 × 40)
Specififc rotation [∝] = 0.5° mL/g.dm
Answer:
The reaction rate would decrease
Explanation:
The equation for the Haber process is given by;
N₂(g) + 3H₂(g) ⇆ 2NH₃(g)
- The reaction occurs at a temperature of 500°C
- Therefore, the forward reaction requires a temperature of 500°C.
- According to Le Chatelier's principle, if a factor affecting equilibrium is altered, the equilibrium will shift in the direction that counteracts the effect causing it.
- In this case, decreasing the temperature to 100°C will lower the rate of the forward reaction.
- Consequently, less ammonia gas will be produced as the reverse reaction is favored.
Cystine is dimer of Cystein amino acid formed by oxidation reaction. Its main function is to provide mechanical strength to proteins and allow them to retain their 3-D structures and also serves as a substrate for the cystine-glutamate antiporter.
As shown in figure cystine has two amino groups (highlighted blue) and two carboxylic groups (highlighted green). In its original structure cystine is neutral in nature as it has equal number of basic (NH₂) and acidic (COOH) moieties along with two chiral centers (asymmetric carbons) highlighted with red spots.
When one -NH₂ group is replaced by -COOH group the cystine is converted into an acidic compound with three COOH groups and a NH₂ group. Also, one asymmetric carbon will convert into a symmetrical carbon with a loss of one chiral carbon.
In second step, when another NH₂ is replaced by COOH, the acidic strength of resulting compound will increase along with conversion of last chiral carbon into symmetric carbon.
Therefore, the final structure will be acidic in nature with zero chiral carbons as shown in figure attached below.
Answer:22.37 mph
Explanation:
100 meters = 0.062137 miles
Assume constant speed over the distance.
0.062137 miles in 10 sec
0.372822 miles in 60 sec = 1 minute
22.36932 miles in 60 minutes
22.37 mph rounded to 2 decimals
Hydrazine has a higher boiling point than water because hydrazine exhibits a stronger intermolecular forces than water. Although both compounds exhibit hydrogen bonding which is a strong intermolecular force resulting to a high boiling point, hydrogen bonding is stronger in hydrazine. This is because in a hydrazine molecule, there are two atoms of nitrogen available for hydrogen bonding as compared to water which has only 1 oxygen atom for hydrogen bonding.