Answer:
0,72 moles of SO₂ remain
Explanation:
The reaction is:
2SO₂ + O₂ → 2SO₃
Where molecular mass of SO₂ is 64,066g/mol and of SO₃ is 80,066g/mol.
86,0g of SO₂ are:
86,0g × (1mol / 64,066g) = <em>1,34 moles of SO₂</em>.
50,0g of SO₃ are:
50,0g × (1mol / 80,066g) = <em>0,62 moles of SO₃</em>.
Now, as 2 moles of SO₂ produce 2 moles of SO₃, the moles of SO₂ that remain after the reaction are the initial moles of SO₂ - moles of SO₃:
1,34 moles - 0,62 moles =
<em>0,72 moles of SO₂ remain</em>
I hope it helps!
Hello!
We have the following data:
Area (
A) = 50 square feet
Mass (
m) = 8.5 ounces
Density (
d) = 2.70 g/cm³
Volume (
V) = ?
Thickness (
T) =? (in mm)
To move on, we must transform the area of 50 ft² in cm², let's see:
1 ft² ------- 929,0304 cm²
50 ft² -----
A

In the same way, we will convert the mass of 8.5 oz in grams, see:
1 oz -------- 28,3495 g
8,5 oz -------
m

Knowing that the density is 2.70 g/cm³ and the mass is 240.97075 g, we will find the volume, applying the data in the density formula we have:



The statement wants to find the thickness of the packaging, for this we have some important data, such as: V (volume) = 89,25 cm³ and Area (A) = 46451,52 cm² and T (thickness) =? (in mm)
In the calculations of Costs in Surface Treatment of a part within the flat geometry, we will use the following formula:





We will convert to millimeters, going through a decimal place on the right

Hope this helps! :))
Smell is a huge part, some bacteria have a unique smell. Depending on oxygen present..... fermentation for some bacteria. Can be noticed through a pH indicator in a media.
<span>Also many differential stains will assist in this.... </span>
<span>Gram, Capsole, Spore...ect.</span>
1.) is157.7 g
<span>moles Fe = 209.7 g/ 55.847 g/mol=3.75
the ratio between Fe and CO is 2 : 3
moles CO = 3.75 x 3 /2 =5.63
mass CO = 5.63 mol x 28.01 g/mol=157.7 g
2.) is </span><span>1.06 moles
</span>48.7/23 = 2.12 moles sodium
<span>2.12/2 x 24 = 25.44dm^3 hydrogen = 1.06 moles </span>
1.06 X 6.02x10^23 = 1.204x10^24 molecules of hydrogen.
3.) is 91.8
<span>8.3 moles H2S x (2 moles H2O / 2 moles H2S) = 8.3 moles H2O = theoretical amount produced. </span><span>8.3 moles H2O x (18.0 g H2O / 1 mole H2O) = 149 g H2O produced theoretically. </span><span>% yield = (actual amount produced / theoretical amount) x 100 = (137.1 g / 149 g) x 100 = 91.8 </span>