The height of the wood is 5 cm. The length is 2 cm and the width its 3 cm. Multiply that and you get 6 cm. The Volume formula is Length times Width times Height. 6 cm times 5 cm makes 30 cm, which is your width.
Answer:
So to increase current of the circuit what you can do is :
1. Use conductor of low resistivity, ¶.
2. Use conductor of small length.
3. Use thick wire.
4. Decrease the temperature of the circuit.
5. If operating temprature is high than use semiconductor, because it have negative temprature coefficient.
6. Minimise the circuit losses.
Answer:
a) 20s
b) 500m
Explanation:
Given the initial velocity = 100 m/s, acceleration = -10m/s^2 (since it is moving up, acceleration is negative), and at the maximum height, the ball is not moving so final velocity = 0 m/s.
To find time, we apply the UARM formula:
v final = (a x t) + v initial
Replacing the values gives us:
0 = (-10 x t) + 100
-100 = -10t
t = 10s
It takes 10s for the the ball to reach its max height, but it must also go down so it takes 2 trips, once going up and then another one going down, both of which take the same time to occur
So 10s going up and another 10s going down:
10x2 = 20s
b) Now that we have v final = 0, v initial = 100, a = -10, t = 10s (10s because maximum displacement means the displacement from the ground to the max height) we can easily find the displacement by applying the second formula of UARM:
Δy = (1/2)(a)(t^2) + (v initial)(t)
Replacing the values gives us:
Δy = (1/2)(-10)(10^2) + (100)(10)
= (-5)(100) + 1000
= -500 + 1000
= 500 m
Hope this helps, brainliest would be appreciated :)
Explanation :
The heating curve shows how water changes from one state of matter to another based on temperature and the addition or removal of heat over time.
Initially, ice is heated until its temperature reaches
and changes to liquid state.
From the attached graph it is clear that until
the temperature will rise steadily. Here, the liquid begins to vaporize. Vaporization is the state of matter at which liquid state changes to the gaseous state.
So, E is the point which shows the gaseous state.
The resultant displacement of the man is 109.77 km in the direction N60°E.
<h3>Displacement</h3>
Displacement is the distance travelled in a specified direction.
To calculate displacement, the straight line from starting point to end point of travel is taken and calculated.
<h3>Resultant displacement of the man </h3>
In the example above, a man walks 95 km, East, then 55 km, north.
The two distances form a right-angled triangle with two sides 95 and 55 units. The hypotenuse gives the resultant displacement, D.
Using Pythagoras rule:
D^2 = 95^2 + 55^2
D^2 = 12050
D = 109.77
Thus, the resultant displacement is 109.77 km
To calculate the direction:
Let the direction be y
y + x = 90°
tan x = 55/95
tanx x = 0.578
x = 30°
Then, y = 90 - 30
y = 60°
Therefore, the resultant displacement of the man is 109.77 km in the direction N60°E.
Learn more about displacement at: brainly.com/question/321442