Answer:
none
Explanation:
it's to high up to be affected by the gravity
Answer:
all the details are in the attached picture, the answers are marked with colour.
Answer:
Answer D : about 1067 meters
Explanation:
There are two steps to this problem:
1) First find the time it takes the plane to stop using the equation for the acceleration:

Where Vf is the final velocity of the plane (in our case: zero )
Vi is the initial velocity of the plane (in our case: 80 m/s)
is the acceleration (in our case -3 m/s^2 - notice negative value because the velocity is decreasing)

with units corresponding to seconds given the quantities involved in the calculation.
2) Second knowing the time it took the plane to stop, now use that time in the equation for the distance traveled under accelerated motion:

Where the answer results in units of meters given the quantities used in the calculation.
We round this to 1067 meters
Explanation:
The temperature must be hot enough to allow the ions of deuterium and tritium to have enough kinetic energy to overcome the Coulomb barrier and fuse together. The ions must be confined with a high ion density to achieve a suitable fusion reaction rate.