It is because the effort distance is greater than the load distance
Explanation:
As we know, Effort×effort distance = load × load distance
So when effort distance is increases,
The effort decreases
So when the spanner’s handle is long
A tight knot can easily be opened by less effrot
I hope it helped
"Asteroid" is the name we give to the huge number of small bodies
that orbit the sun, here in the inner solar system.
Their orbits are scattered all over the place. Most of them spend
most of the time between the orbits of Mars and Jupiter, but there are
many asteroids that sometimes come very close to Earth.
Using the constant acceleration formula v^2 = u^2 + 2as, we can figure out that it would take a distance of 193.21m to reach 27.8m/s
The x -component of the object's acceleration is 2 m/s².
<h3>What's the resultant force along x- direction?</h3>
- Forces along x axis direction are as follows
- 4N along +x axis, so it's taken as +4 N
- 2N along -x axis , so it's taken as -2N.
- Resultant force along x direction = 4N - 2N = 2 N which is along + ve x direction.
<h3>What's the acceleration along x axis direction?</h3>
- As per Newton's second law, Force = mass × acceleration of the object
- Force along x axis= mass × acceleration along x axis= 2N
- Acceleration = 2/ mass = 2/1 = 2 m/s²
Thus, we can conclude that the acceleration along x axis is 2 m/s².
Disclaimer: The question was given incomplete on the portal. Here is the complete question.
Question: The forces in (Figure 1) are acting on a 1.0 kg object. What is ax, the x-component of the object's acceleration?
Learn more about the acceleration here:
brainly.com/question/460763
#SPJ1
Answer:
was is carl sagan?
Explanation:
please forgive me if im wrong :(