Is recommend attaching the answer choices; Meters, Liters, Grams are three basic ones
The capacitance of a capacitor is the ratio of the stored charge to its potential difference, i.e.
C = Q/ΔV
C is the capacitance
Q is the stored charge
ΔV is the potential difference
Rearrange the equation:
ΔV = Q/C
We also know the capacitance of a parallel-plate capacitor is given by:
C = κε₀A/d
C is the capacitance
κ is the capacitor's dielectric constant
ε₀ is the electric constant
A is the area of the plates
d is the plate separation
If we substitute C:
ΔV = Qd/(κε₀A)
We assume the stored charge and the area of the plates don't change. Then if we double the plate spacing, i.e. we double the value of d, then the potential difference ΔV is also doubled.
The correct answer is Metals.
Generally, the specific heat of metals is low. Very high specific heat exists in water.A physical feature of matter known as heat capacity or thermal capacity is the quantity of heat that must be applied to an object in order to cause a unit change in temperature. Heat capacity is measured in joules per kelvin (J/K), the SI unit. A broad property is heat capacity. Use the following equation to determine heat capacity: heat capacity = E / T, where E is the quantity of delivered heat energy and T is the change in temperature. The formula would be as follows, for instance, if it takes 2,000 Joules of energy to raise a block's temperature by 5 degrees Celsius: 2,000 Joules per °C is the heat capacity.
Learn more about heat capacity here :-
brainly.com/question/13499849
#SPJ4
Complete Question
The complete question is shown on the first uploaded image
Answer:
The maximum emf is 
The emf induced at t = 1.00 s is 
The maximum rate of change of magnetic flux is 
Explanation:
From the question we are told that
The number of turns is N = 44 turns
The length of the coil is 
The width of the coil is 
The magnetic field is 
The angular speed is 
Generally the induced emf is mathematically represented as

Where
is the maximum induced emf and this is mathematically represented as

Where
is the magnetic flux
N is the number of turns
A is the area of the coil which is mathematically evaluated as

Substituting values


substituting values into the equation for maximum induced emf


given that the time t = 1.0sec
substituting values into the equation for induced emf 


The maximum induced emf can also be represented mathematically as

Where
is the magnetic flux and
is the maximum rate at which magnetic flux changes the value of the maximum rate of change of magnetic flux is

Answer:
I think it's 3
Explanation:
Can I have brainliest? It would help me out, if not thanks anyways! Hope this helped and have a nice day!