1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nikitadnepr [17]
3 years ago
11

A rotating object has an angular acceleration of α = 0 rad/s2. Which one or more of the following three statements is consistent

with a zero angular acceleration?
A. The angular velocity is ω = 0 rad/s at all times.
B. The angular velocity is ω = 10 rad/s at all times.
C. The angular displacement θ has the same value at all times.
Physics
1 answer:
Murrr4er [49]3 years ago
4 0

Answer:

A,B and C

Explanation:

Statement A  

At all times, angular velocity is \omega = 0\,{\rm{rad/s}  

Angular acceleration is the rate of change in angular velocity with respect to time.  

Angular velocity and angular acceleration are related by  

{\omega _{\rm{f}}} = {\omega _{\rm{i}}} + \alpha t

Which when re-arranged becomes  

\alpha = \frac{{{\omega _{\rm{f}}} - {\omega _{\rm{i}}}}}{t}

There’s no change in angular velocity anytime when the angular velocity is \omega = 0\,{\rm{rad/s}}

The equation can be modified as follows:  

\begin{array}{c}\\\alpha = \frac{{0\,{\rm{rad/s}} - 0\,{\rm{rad/s}}}}{t}\\\\ = 0\\\end{array}

Therefore, the angular acceleration becomes zero hence statement A is valid.  

Statement B  

Angular acceleration is the rate of change in angular velocity with respect to time.  

Angular velocity and angular acceleration are related by  

{\omega _{\rm{f}}} = {\omega _{\rm{i}}} + \alpha t

Which when re-arranged becomes  

\alpha = \frac{{{\omega _{\rm{f}}} - {\omega _{\rm{i}}}}}{t}

There’s no change in angular velocity anytime when the angular velocity is \omega = 10\,{\rm{rad/s}}.The final and initial velocities remain the same.  

The equation can be modified as follows:  

\begin{array}{c}\\\alpha = \frac{{10\,{\rm{rad/s}} - 10\,{\rm{rad/s}}}}{t}\\\\ = 0\\\end{array}

Therefore, the angular acceleration becomes zero and statement B is valid  

Statement C  

Angular velocity is defined as the change in the angular position with respect to time.  

Angular velocity and angular displacement are related by  

\theta = \omega t

Which can also be modified as:  

{\theta _{\rm{f}}} - {\theta _{\rm{i}}}

Note that the final position is {\theta _{\rm{f}}}and initial position is {\theta _{\rm{i}}}

Modifying the equation to find the angular velocity we obtain  

\omega = \frac{{{\theta _{\rm{f}}} - {\theta _{\rm{i}}}}}{t}

When the angular displacement has the same value at all times, the equation becomes  

\begin{array}{c}\\\omega = \frac{{{\theta _{\rm{i}}} - {\theta _{\rm{i}}}}}{t}\\\\ = 0\\\end{array}

The angular velocity becomes zero.  

Angular acceleration and angular velocity are related by  

{\omega _{\rm{f}}} = {\omega _{\rm{i}}} + \alpha t

The expression above can be rearranged as follows:  

\alpha = \frac{{{\omega _{\rm{f}}} - {\omega _{\rm{i}}}}}{t}

At all times, the angular velocity is \omega = 0\,{\rm{rad/s}} hence initial and final velocities remain the same  

We obtain  

\begin{array}{c}\\\alpha = \frac{{0\,{\rm{rad/s}} - 0\,{\rm{rad/s}}}}{t}\\\\ = 0\\\end{array}

Therefore, the angular acceleration becomes zero and statement C is valid.  

Therefore, statements A,B and C are consistent .

You might be interested in
Why cant your rocket could never reach the speed of light?
Oksanka [162]

Answer:

The length of the object would shrink to zero which is not possible.

Explanation:

A rocket or any body cannot reach the speed of light because according to theory of relativity the and the Lorentz factor the length of the object would shrink to zero and the time dilation for that body would be infinite.

The Lorentz factor is given as:

\gamma=\frac{1}{\sqrt{\frac{v^2}{c^2} } }

where:

v = speed of the moving object

c = speed of light

4 0
3 years ago
11.76 cm² into two significant figures and include the appropriate units
PilotLPTM [1.2K]
You will need to turn this into scientific notation, so:

1.176 × 10^1 cm^2

To two significant figures means to two digits so since 7 is greater than 5, you will need to round up.

Final answer is:

1.2×10^1 cm^2
8 0
3 years ago
Plz i need help for the 5 problems. plz show the work!!!
Artemon [7]

Answer:

1.   3 m/s^{2}

2.   1.5 m/s^{2}

3.   3 seconds

4.   0 m/s^{2}

5.   2.2 seconds

Explanation:

(1)

From v= u + at where v is final velocity, u is initial velocity, a is acceleration and t is time.

Making a the subject we have

a=\frac {v-u}{t}

Substituting u=0 since it’s at rest, v=30m/s and t=10 seconds

a = \frac {30-0}{10}=3 m/s^{2}

(2)

From v= u + at where v is final velocity, u is initial velocity, a is acceleration and t is time.

Making a the subject we have

a=\frac {v-u}{t}

Substituting u=10m/s, v=22m/s and t=8 seconds

a = \frac {22-10}{8}=1.5 m/s^{2}

(3)

From v= u + at where v is final velocity, u is initial velocity, a is acceleration and t is time.

Making t the subject we have

t=\frac {v-u}{a}

Substituting u=0m/s since at rest, v=15m/s and a=5 \frac {m}{s^{2}}

= \frac {15-0}{5}=3s

(4)

When initial and final velocity are constant, there’s no acceleration as proven below

From v= u + at where v is final velocity, u is initial velocity, a is acceleration and t is time.

Making a the subject we have

a=\frac {v-u}{t}

Substituting u=20 since it’s at rest, v=20m/s and t=10 seconds

a = \frac {20-20}{10}=0 m/s^{2}

(5)

From v= u + at where v is final velocity, u is initial velocity, a is acceleration and t is time.

Making t the subject we have

t=\frac {v-u}{a}

Substituting u=9m/s since at rest, v=0m/s and a=-4.1 \frac {m}{s^{2}}

= \frac {0-9}{-4.1}=2.2s

8 0
2 years ago
A golf club hits a stationary 0.05kg golf ball with and average force of 5.0 x 10^3 newtons accelerating the ball at 44 meters p
maxonik [38]

Answer: The magnitude of impulse imparted to the ball by the golf club is 2.2 N seconds

Explanation:

Force applied on the golf ball = 5.0\times 10^3 N

Mass of the ball = 0.05 kg

Velocity with which ball is accelerating = 44 m/s

Time period over which forece applied = t

f=ma=\frac{m\times v}{t}

t=\frac{0.05 kg\times 44m/s}{5.0\times 10^3 N}=4.4\times 10^{-4} seconds

Impulse=(force)\times (time)=f\times t = 5.0\times 10^3\times 4.4\times 10^{-4} seconds=2.2 Newton seconds

The magnitude of impulse imparted to the ball by the golf club is 2.2 N seconds

7 0
3 years ago
How long will it take, in minutes, for a transformer to transfer 2.3 X 10^6 J of energy from a 120-V circuit to a 345-V circuit
masya89 [10]

Answer:

e

Explanation:

3 0
2 years ago
Other questions:
  • What are real images? Are the upright or inverted?
    11·1 answer
  • A car traveling at 26 m/s starts to decelerate steadily. It comes to a complete stop in 6 seconds. What is its acceleration?
    12·1 answer
  • How many legs a cow has​
    10·1 answer
  • If you mass 35kg on earth what will your mass be on the moon where gravity is 1/6 that of earths. PLZZZZ HElP NEED ASAP
    12·1 answer
  • If the air pressure is doubled, the speed of sound
    11·1 answer
  • What is the most common state of matter in the universe
    14·1 answer
  • Help meh, no links and please give the right answer.
    8·1 answer
  • A negative body image can affect your fitness because being healthy asks you to keep
    7·1 answer
  • A bike travels at 3.0 m/s, and then accelerates to a speed of
    5·1 answer
  • A weather forecast for a certain day in an area shows two measurements, 18 degrees Celsius and 25 degrees Celsius. What do these
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!