After putting stuff through google and some calculators, I’d say the answer is C.
Answer:
A
Explanation:
this is because the law of reflection states that the angle of incidence equals to the angle of the reflection.
hope this helps, if not please report it
someone else can try it
Answer:
Original speed of the mess kit = 4.43 m/s at 50.67° north of east.
Explanation:
Let north represent positive y axis and east represent positive x axis.
Here momentum is conserved.
Let the initial velocity be v.
Initial momentum = 4.4 x v = 4.4v
Velocity of 2.2 kg moving at 2.9 m/s, due north = 2.9 j m/s
Velocity of 2.2 kg moving at 6.8 m/s, 35° north of east = 6.9 ( cos 35i + sin35 j ) = 5.62 i + 3.96 j m/s
Final momentum = 2.2 x 2.9 j + 2.2 x (5.62 i + 3.96 j) = 12.364 i + 15.092 j kgm/s
We have
Initial momentum = Final momentum
4.4v = 12.364 i + 15.092 j
v =2.81 i + 3.43 j
Magnitude

Direction

50.67° north of east.
Original speed of the mess kit = 4.43 m/s at 50.67° north of east.
Answer:
1500 per second.
Explanation:
vibrations = 1.5 kilohertz
1.5×1000=1500
the answer is 1500 per second.
Correct Answers is A.
The machines gives us some mechanical advantage. This means the mechanical average makes the work output greater than the work input
Simple most example is a lever. The force applied is smaller and the output work is larger as compared to input.
Option B cannot be true, as there must be a force to get some work done.
Option C and D are inverse of what a machine is designed for. A small force can be exerted through a large distance to have a large force exerted through a small distance. Common Example of this principle is a screw opener.